Efficient Monte Carlo for Gaussian Fields and Processes

Jose Blanchet (with R. Adler, J. C. Liu, and C. Li)

Columbia University

Nov, 2010

Introduction

- 2 Importance Sampling and Efficiency
- 3 Example 1: Maximum of Gaussian Process
- 4 Example 2: Gaussian Random Fields

• Contamination level in a geographic area... (yellow area = Mexico City)

• When the ground-level ozone reaches 270 parts per billion, Mexico City bans the use of a significant portion of cars, orders industry to reduce emissions by 50% and closes gas stations...

- When the ground-level ozone reaches 270 parts per billion, Mexico City bans the use of a significant portion of cars, orders industry to reduce emissions by 50% and closes gas stations...
- What's the chance that high levels are reached in a given area? What happens to other areas given that a high level has been reached somewhere?

- When the ground-level ozone reaches 270 parts per billion, Mexico City bans the use of a significant portion of cars, orders industry to reduce emissions by 50% and closes gas stations...
- What's the chance that high levels are reached in a given area? What happens to other areas given that a high level has been reached somewhere?
- X(t, s) =logarithm of ozone's concentration at position s (in yellow area) at time t...

- When the ground-level ozone reaches 270 parts per billion, Mexico City bans the use of a significant portion of cars, orders industry to reduce emissions by 50% and closes gas stations...
- What's the chance that high levels are reached in a given area? What happens to other areas given that a high level has been reached somewhere?
- X(t, s) =logarithm of ozone's concentration at position s (in yellow area) at time t...
- Adler, Blanchet and Liu (2010): Algorithm for conditional sampling with ε relative precision in time

 $Poly\{\varepsilon^{-1}\log[1/p(high excursion)]\}$

 Another motivating application: Queues with Gaussian input Mandjes (2007)

$$u(b) := P\left(\max_{k\geq 0} X(k) > b\right)$$

where $X(\cdot)$ is a suitably defined Gaussian process.

 Another motivating application: Queues with Gaussian input Mandjes (2007)

$$u\left(b
ight):=P\left(\max_{k\geq0}X\left(k
ight)>b
ight)$$

where $X(\cdot)$ is a suitably defined Gaussian process.

• Blanchet and Li (2010): Algorithm for conditional sampling with $\ensuremath{\varepsilon}$ relative precision in time

$$\mathsf{Poly}\{\varepsilon^{-1}\log[1/u(b)]\}$$

Introduction

2 Importance Sampling and Efficiency

- 3 Example 1: Maximum of Gaussian Process
- 4 Example 2: Gaussian Random Fields

• Goal: Estimate u := P(A) > 0 and

- Goal: Estimate u := P(A) > 0 and
- Choose \widetilde{P} and simulate ω from it

- Goal: Estimate u := P(A) > 0 and
- Choose \widetilde{P} and simulate ω from it
- I.S. estimator *per trial* is

$$Z=L\left(\omega
ight)$$
 $I\left(\omega\in A
ight)$,

where $L(\omega)$ is the likelihood ratio (i.e. $L(\omega) = P(\omega) / \tilde{P}(\omega)$).

- Goal: Estimate u := P(A) > 0 and
- Choose \widetilde{P} and simulate ω from it
- I.S. estimator *per trial* is

$$Z=L\left(\omega
ight)$$
 $I\left(\omega\in A
ight)$,

where $L(\omega)$ is the likelihood ratio (i.e. $L(\omega) = P(\omega) / \tilde{P}(\omega)$). • \tilde{P} is called a change-of-measure

• Must apply I.S. with care -> Can increase the variance

- \bullet Must apply I.S. with care –> Can increase the variance
- Glasserman and Kou '95, Asmussen, Binswanger and Hojgaard '00

• Goal: Choose \widetilde{P} simulatable and efficiently as $P(A) \searrow 0$.

- Goal: Choose \widetilde{P} simulatable and efficiently as $P(A) \searrow 0$.
- Strong Efficiency:

$$\widetilde{E}Z^{2}/P\left(A
ight)^{2}=O\left(1
ight).$$

- Goal: Choose \widetilde{P} simulatable and efficiently as $P(A) \searrow 0$.
- Strong Efficiency:

$$\widetilde{E}Z^{2}/P\left(A
ight)^{2}=O\left(1
ight)$$
 .

• Weak Efficiency:

$$\widetilde{\textit{E}}\textit{Z}^{2}/\textit{P}\left(\textit{A}
ight)^{2}=\textit{O}\left(1/\textit{P}\left(\textit{A}
ight)^{\epsilon}
ight)$$
 for every $\epsilon>0.$

- Goal: Choose \widetilde{P} simulatable and efficiently as $P(A) \searrow 0$.
- Strong Efficiency:

$$\widetilde{E}Z^{2}/P\left(A
ight)^{2}=O\left(1
ight)$$
 .

• Weak Efficiency:

$$\widetilde{E}Z^{2}/P\left(A
ight)^{2}=O\left(1/P\left(A
ight)^{\epsilon}
ight)$$
 for every $\epsilon>0.$

• Polynomial Efficiency:

 $\widetilde{E}Z^{2}/P\left(A
ight)^{2}=O\left(\log\left(1/P\left(A
ight)
ight)^{q}
ight)$ for some q>0.

- Goal: Choose \widetilde{P} simulatable and efficiently as $P(A) \searrow 0$.
- Strong Efficiency:

$$\widetilde{E}Z^{2}/P\left(A
ight)^{2}=O\left(1
ight).$$

• Weak Efficiency:

$$\widetilde{E}Z^{2}/P\left(A
ight)^{2}=O\left(1/P\left(A
ight)^{\epsilon}
ight)$$
 for every $\epsilon>0.$

• Polynomial Efficiency:

$$\widetilde{\mathsf{E}} Z^2/\mathsf{P}\left(\mathsf{A}
ight)^2 = O\left(\log\left(1/\mathsf{P}\left(\mathsf{A}
ight)
ight)^q
ight) \,$$
 for some $q>0.$

$$Strong \succeq Weak \succeq Polynomial$$

۲

• Suppose we choose $\widetilde{P}(\cdot) = P(\cdot|A)$

$$L(\omega) = \frac{P(\omega) I(\omega \in A)}{P(\omega) I(\omega \in A) / P(A)} = P(A)$$

• Suppose we choose $\widetilde{P}(\cdot) = P(\cdot|A)$

$$L(\omega) = \frac{P(\omega) I(\omega \in A)}{P(\omega) I(\omega \in A) / P(A)} = P(A)$$

• Estimator has zero variance, but requires knowledge of P(A)

• Suppose we choose $\widetilde{P}(\cdot) = P(\cdot|A)$

$$L(\omega) = \frac{P(\omega) I(\omega \in A)}{P(\omega) I(\omega \in A) / P(A)} = P(A)$$

Estimator has zero variance, but requires knowledge of P (A)
Lesson: Try choosing P (·) close to P (·| A)!

Introduction

- Importance Sampling and Efficiency
- Example 1: Maximum of Gaussian Process
 - Target Bridge Sampling
 - Brownian Motion
 - Efficiency Analysis
 - Numerical Example

4 Example 2: Gaussian Random Fields

Example 1: Maximum of Gaussian Process

- Let $\mathbf{X} = (X_k : k \ge 0)$ be a Gaussian process with $Var(X_k) = \sigma_k^2$ and $EX_k = \mu_k < 0$.
- Want to efficiently estimate (as $b \nearrow \infty$)

$$u(b) = \mathbb{P}[\max_{k\geq 1} X_k > b]$$

Assume

$$\sigma_k \sim c_\sigma k^{H_\sigma}$$
, $|\mu_k| \sim c_\mu k^{H_\mu}$, $0 < H_\sigma < H_\mu < \infty$

so $u(b) \rightarrow 0$ as $b \rightarrow \infty$.

- No assumption on correlation structure.
- Asymptotic regime known as "large buffer scaling".

- Rich literature on asymptotics for u(b)
 - Pickands (1969), Berman (1990), Duffield and O'Connell (1995), Piterbarg (1996), Husler and Piterbarg (1999), Dieker (2006), Husler (2006), Likhanov and Mazumdar (1999), Debicki and Mandjes (2003)...

Related Simulation Algorithms

Common basic idea is to sample Gaussian process by mean tracking the most likely path given the overflow, time-slot by time-slot.

- Identifying the target set T;
- 2 Targeting;

- Identifying the target set T;
- Targeting;
- Bridging;

- Identifying the target set T;
- Targeting;
- Initial Bridging;
- $T(b) = \inf\{k : X_k > b\};$

- Identifying the target set T;
- Targeting;
- Bridging;
- $T(b) = \inf\{k : X_k > b\};$
- Oeleting

Likelihood of a Path

$$\widetilde{P}(X_1,\ldots,X_{T(b)}) = \sum_{k=T(b)}^{\infty} \widetilde{P}(\tau=k) \int_b^{\infty} P(X_1,\ldots,X_{T(b)}|X_k) \widetilde{P}(dX_k).$$

$$\widetilde{P}(\tau = k) \propto P(X_k > b | T(b) < \infty) \propto P(X_k > b)$$

• Given $\tau = k$ sample $\widetilde{P}(X_k \in \cdot) = P(X_k \in \cdot | X_k > b)$

$$\begin{split} \widetilde{P}(X_{1},...,X_{T(b)}) \\ &= \sum_{k=T(b)}^{\infty} \widetilde{P}(\tau=k) \int_{b}^{\infty} P(X_{1},...,X_{T(b)}|X_{k}) \widetilde{P}(dX_{k}) \\ &= \sum_{k=T(b)}^{\infty} \frac{P(X_{k} > b)}{\sum_{j=1}^{\infty} P(X_{j} > b)} \int_{b}^{\infty} P(X_{1},...,X_{T(b)}|X_{k}) \frac{P(dX_{k})}{P(X_{k} > b)} \\ &= \sum_{k=T(b)}^{\infty} \frac{P(X_{1},...,X_{T(b)},X_{k} > b)}{\sum_{j=1}^{\infty} P(X_{j} > b)} \\ &= \frac{P(X_{1},...,X_{T(b)})}{\sum_{j=1}^{\infty} P(X_{j} > b)} \sum_{k=T(b)}^{\infty} P\left(X_{k} > b|X_{1},...,X_{T(b)}\right) \end{split}$$

Consequently, the importance sampling estimator for u(b) generated by P is simply

$$L = \frac{dP}{d\tilde{P}} \left(X_1, ..., X_{T(b)} \right)$$

=
$$\frac{\sum_{j=1}^{\infty} P(X_j > b)}{\sum_{j=T(b)}^{\infty} P\left(X_j > b | X_1, ..., X_{T(b)} \right)}.$$

• Consider the case when

$$X_{t}=B\left(t\right) -t,$$

is a standard Brownian motion, with negative linear drift $\mu_t = t$.

• Consider the case when

$$X_{t}=B\left(t\right) -t,$$

is a standard Brownian motion, with negative linear drift $\mu_t=t.$ \bullet The likelihood ratio:

$$L = \frac{\int_0^\infty P(B_t - t > b) dt}{\int_{T(b)}^\infty P\left(B_t - t > b\right| B_{T(b)} = b\right) dt} = \frac{\int_0^\infty P(B_t - t > b) dt}{\int_0^\infty P(B_t - t \ge 0) dt},$$

is a **constant**!

• Consider the case when

$$X_{t}=B\left(t\right) -t,$$

is a standard Brownian motion, with negative linear drift $\mu_t=t.$ \bullet The likelihood ratio:

$$L = \frac{\int_0^\infty P(B_t - t > b) dt}{\int_{T(b)}^\infty P\left(B_t - t > b\right| B_{T(b)} = b\right) dt} = \frac{\int_0^\infty P(B_t - t > b) dt}{\int_0^\infty P(B_t - t \ge 0) dt},$$

is a **constant**!

• Zero-variance importance sampler:

$$\widetilde{E}L \equiv L = P\left(\max_{t\geq 0} B_t - t > b\right) = \exp(-2b)$$

• Consider the case when

$$X_{t}=B\left(t\right) -t,$$

is a standard Brownian motion, with negative linear drift $\mu_t=t.$ \bullet The likelihood ratio:

$$L = \frac{\int_0^\infty P(B_t - t > b) dt}{\int_{T(b)}^\infty P\left(B_t - t > b\right| B_{T(b)} = b\right) dt} = \frac{\int_0^\infty P(B_t - t > b) dt}{\int_0^\infty P(B_t - t \ge 0) dt},$$

is a **constant**!

• Zero-variance importance sampler:

$$\widetilde{E}L \equiv L = P\left(\max_{t\geq 0} B_t - t > b\right) = \exp(-2b)$$

• In this case TBS outputs a Brownian motion with drift +1.

• The efficiency analysis involves

$$\frac{\widetilde{E}(L^2)}{P(\max_{k\geq 1} X_k \geq b)^2} \leq \left[\frac{\sum_{k=0}^{\infty} P(X_k > b)}{P(\max_{k\geq 1} X_k \geq b)}\right]^2$$
$$\leq \left[\frac{\sum_{k=1}^{\infty} P(X_k \geq b)}{\max_{k\geq 1} P(X_k \geq b)}\right]^2$$

• Does not involve the correlation structure...

Efficiency Analysis

Theorem

If $(\sigma_k : k \ge 1)$ and $(\mu_k : k \ge 1)$ have power law type tails with power indices $0 < H_{\sigma} < H_{\mu} < \infty$ respectively, then we have that L is an unbiased estimator of u(b) 2 Let $h(b) = \lambda (H_{\mu}, H_{\sigma}) b^{\frac{H_{\mu}-H_{\sigma}}{H_{\mu}}}$, then $u(b) = O(h(b)^{1/(H_{\mu}-H_{\sigma})} \exp(-h(b))).$ 3 $\frac{E\left(L^{2}\right)}{\mu(b)^{2}}=O(b^{2/H_{\mu}});$

- Polynomially efficient
- Strongly efficient in many source scaling

Jose Blanchet (Columbia)

Method	Many Sources	Large Buffer	Cost of each
			replication
Single twist	х	x	$O(b^3)$
Cut-and-twist	weakly	x	$O(b^4)$
Random twist	weakly	x	$O(b^{3})$
Sequential twist	weakly	x	$O(nb^3)$
Mean shift	x	x	$O(b^3)$
ВМС	x	x	$O(b^{3})$
TBS	strongly	polynomial	$O(b^{3})$

- Test the performance of our Target Bridge Sampler and compare it against other existing methods in the many sources setting.
- Suppose that $\{X_k\}$ are driven by fractional Brownian noises, that is, $\operatorname{Cov}(X_k, X_j) = (k^{2H_\sigma} + j^{2H_\sigma} - |k - j|^{2H_\sigma})/2$ and $\mu_k = k$.
- The numerical result is compared against what was reported in Dieker and Mandjes (2006).

b = 300	Cost of each	Estimator	Simulation Runs	Time
	replication			
Naive	$O(b^3)$	$6.12 imes 10^{-4}$	833562	232s
Single twist	$O(b^3)$	$4.84 imes 10^{-4}$	4038	~60s
Cut-and-twist	$O(b^4)$	$5.95 imes10^{-4}$	703	~80s
Random twist	$O(b^3)$	$5.50 imes10^{-4}$	3269	~50s
Sequential twist	$O(nb^3)$	$6.39 imes10^{-4}$	692	~100s
TBS	$O(b^3)$	$5.84 imes 10^{-4}$	26	1s
Benchmark	-	$5.75 imes10^{-4}$	-	

Table: Simulation result of Example 2 with n = 300, b = 3, $H_{\sigma} = 0.8$.

Introduction

2 Importance Sampling and Efficiency

3 Example 1: Maximum of Gaussian Process

Example 2: Gaussian Random Fields Discrete Version

• Discrete version: $(X_1, ..., X_d)$ multivariate Gaussian: Consider

$$P\left(\max_{i=1}^{d} X_i > b\right)$$
$$P\left((X_1, ..., X_d) \in \cdot | \max_{i=1}^{d} X_i > b\right)$$

• Discrete version: $(X_1, ..., X_d)$ multivariate Gaussian: Consider

$$P\left(\max_{i=1}^{d} X_i > b\right)$$
$$P\left((X_1, ..., X_d) \in \cdot |\max_{i=1}^{d} X_i > b\right)$$

• Monte Carlo strategy:

• Discrete version: $(X_1, ..., X_d)$ multivariate Gaussian: Consider

$$P\left(\max_{i=1}^{d} X_i > b\right)$$
$$P\left((X_1, ..., X_d) \in \cdot |\max_{i=1}^{d} X_i > b\right)$$

• Monte Carlo strategy:

() Pick *i*-th coordinate with probability proportional to $P(X_i > b)$

• Discrete version: $(X_1, ..., X_d)$ multivariate Gaussian: Consider

$$P\left(\max_{i=1}^{d} X_i > b\right)$$
$$P\left((X_1, ..., X_d) \in \cdot \mid \max_{i=1}^{d} X_i > b\right)$$

- Monte Carlo strategy:
- Pick *i-th* coordinate with probability proportional to P (X_i > b)
 Sample X_i given X_i > b

• Discrete version: $(X_1, ..., X_d)$ multivariate Gaussian: Consider

$$P\left(\max_{i=1}^{d} X_i > b\right)$$
$$P\left((X_1, ..., X_d) \in \cdot \mid \max_{i=1}^{d} X_i > b\right)$$

- Monte Carlo strategy:
- **()** Pick *i*-th coordinate with probability proportional to $P(X_i > b)$
- 2 Sample X_i given $X_i > b$
- Sample the remaining values given X_i

$$\widetilde{P}\left(\left(X_{1},...,X_{d}\right)\in\cdot\right)=\sum_{i=1}^{d}\frac{P\left(X_{i}>b\right)P\left(\left(X_{1},...,X_{d}\right)\in\cdot|X_{i}>b\right)}{\sum_{j=1}^{d}P\left(X_{j}>b\right)}$$

• Prob. measure

$$\begin{split} \widetilde{P}((X_1, ..., X_d) \in \cdot) &= \sum_{i=1}^d \frac{P(X_i > b) P((X_1, ..., X_d) \in \cdot | X_i > b)}{\sum_{j=1}^d P(X_j > b)} \\ &= \sum_{i=1}^d \frac{P((X_1, ..., X_d) \in \cdot; X_i > b)}{\sum_{j=1}^d P(X_j > b)} \end{split}$$

Likelihood ratio

$$I(\max_{i=1}^{d} X_i > b) \frac{dP}{d\tilde{P}}(X_1, ..., X_d)$$

= $I(\max_{i=1}^{d} X_i > b) \frac{\sum_{j=1}^{d} P(X_j > b)}{\sum_{j=1}^{d} I(X_j > b)}$
 $\leq \sum_{j=1}^{d} P(X_j > b).$

Theorem (Adler, Blanchet and Liu (2008))

If Corr $(X_i, X_j) < 1$ then

$$P(\max_{i=1}^{d} X_{i} > b) = \sum_{j=1}^{d} P(X_{j} > b) (1 + o(1))$$

as b $\nearrow \infty$ and therefore

$$\sup_{A} |P((X_1, ..., X_d) \in A| \max_{i=1}^d X_i > b) - \widetilde{P}((X_1, ..., X_d) \in A)| \longrightarrow 0$$

s b $\nearrow \infty$.

а

Efficient Monte Carlo for High Excursions of Gaussian Random Fields

Jose Blanchet Columbia University

Joint work with Robert Adler (Technion-Israel Institute of Technology) Jingchen Liu (Columbia University)

Continuous Gaussian Random Fields on Compacts

• Gaussian random field,

$$f(t,\omega): T \times \Omega \to R$$

where $T \subset R^d$ is a compact set.

- $E(f(t)) = \mu(t)$
- $Cov(f(s), f(t)) = C(s, t), \qquad \sigma^2(t) = C(t, t)$

High Excursion Probability

• Interesting probability

$$P(\sup_{t \in T} f(t) > b)$$

as $b \to \infty$.

• More generally,

$$E\left(\left.\Gamma\left(f\left(\cdot\right)\right)\right|\sup_{t\in T}f\left(t\right)>b\right)$$

where $\Gamma(\cdot)$ is suitable functional.

Asymptotic results

• Under very mild conditions

$$\lim_{b \to \infty} \frac{\log P(\sup_{t \in T} f(t) > b)}{b^2} = -\frac{1}{\sup_{t \in T} 2\sigma^2(t)}$$

• Sharp asymptotics for mean zero and constant variance random fields (under conditions)

$$P(\sup_{t \in T} f(t) > b) = (1 + o(1))C(T) \times b^{k-1} \times e^{-\frac{b^2}{2\sigma^2}}$$

k depends on dimension of T and continuity of f(t).

Pickands (1969), Piterbarg (1995), Sun (1993), Adler (1981), Azais and Wschebor (2005), Taylor, Takemura and Adler (2005).

The change of measure

- *mes* is the Lebesgue measure
- A_{γ} is the excursion set

 \frown

 $A_{\gamma} = \{t \in T : f(t) > \gamma\}$

 $E(mes(A_{\gamma})) = E \int_{T} I(f(t) > \gamma) dt = \int_{T} P(f(t) > \gamma) dt$

• A change of measure on C(T)

$$\frac{dQ_{\gamma}}{dP} = \frac{mes(A_{\gamma})}{E(mes(A_{\gamma}))}.$$

Simulation from this change of measure

1. Simulate $\tau_{\gamma} \in T$

$$\tau_{\gamma} \sim h(t) = \frac{P(f(t) > \gamma)}{\int_{T} P(f(s) > \gamma) ds};$$

- 2. Simulate $f(\tau_{\gamma})$ conditional on $f(\tau_{\gamma}) > \gamma$;
- 3. Simulate $\{f(t) : t \neq \tau_{\gamma}\}$ conditional on $f(\tau_{\gamma})$.

The estimator and its variance

• The estimator

$$Z_b = I(\sup_T f(t) > b) \frac{\int_T P(f(t) > \gamma) dt}{mes(A_\gamma)}$$

• The second moment

$$E^{Q}Z_{b}^{2} = E(Z_{b}) = \int_{T} P(f(t) > \gamma)dt \times E\left(\frac{1}{mes(A_{\gamma})}; \sup_{T} f(t) > b\right)$$
$$= \int_{T} P(f(t) > \gamma)dt$$
$$\times P\left(\sup_{T} f(t) > b\right)$$
$$\times E\left(\frac{1}{mes(A_{\gamma})} \middle| \sup_{T} f(t) > b\right)$$

The Estimator and Its Variance

 $Z \sim \text{Exponential}(1)$

The choice of $\boldsymbol{\gamma}$

- $\gamma = b$ results in infinite variance
- $\gamma = b a/b$

$$E^{Q}Z_{b}^{2} = \int_{T} P(f(t) > b - a/b)dt$$
$$\times P\left(\sup_{T} f(t) > b\right)$$
$$\times E\left(\frac{1}{mes(A_{b-a/b})} \left|\sup_{T} f(t) > b\right)$$

The area of excursion set, $mes(A_{b-1/b})$, given high excursion

Efficiency results – the general case

Theorem 1 (Adler, Blanchet, and L. (2010)) Choose $\gamma = b-a/b$ for some a > 0 and

$$Z_b = I(\sup_T f(t) > b) \frac{\int_T P(f(t) > \gamma) dt}{mes(A_{\gamma})}$$

If f is uniformly Hölder continuous, that is, $E(f(s) - f(t))^2 \leq \kappa |s - t|^{\beta}$, for some $\beta \in (0, 2]$, then

$$\frac{E^Q Z_b^2}{P^2 \left(\sup_T f(t) > b\right)} \le b^{\alpha},$$

for some $\alpha > 0$ and all b.

Efficiency results – the homogeneous case

Theorem 1 (Adler, Blanchet, and L. (2010)) Choose $\gamma = b-a/b$ for some a > 0 and

$$Z_b = I(\sup_T f(t) > b) \frac{\int_T P(f(t) > \gamma) dt}{mes(A_{\gamma})}.$$

If f is twice differentiable and homogeneous, then

$$E^Q Z_b^2 \le \kappa P^2 \left(\sup_T f(t) > b \right),$$

for some $\kappa > 0$ and all b.

Implementation – discretize the continuous filed

• Discretize the space T, $\{t_1, \dots, t_n\}$

$$P(\sup_i f(t_i) > b) \to P(\sup_T f(t) > b), \text{ as } n \to \infty.$$

• It is sufficient to choose $n = (b/\varepsilon)^{\alpha}$ such that

$$1 - \varepsilon \le \frac{P(\sup_i f(t_i) > b)}{P(\sup_T f(t) > b)} \le 1$$

Adler, Blanchet and L. (2010)

Summary

- Non-exponential change-of-measure for Gaussian processes and fields (efficiency properties & conditional sampling)
- Polynomialy efficient for general Hölder continuous fields
- Strong efficiency for homogeneous fields