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A Motivating Application

Contamination level in a geographic area... (yellow area = Mexico
City)
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A Motivating Application

When the ground-level ozone reaches 270 parts per billion, Mexico
City bans the use of a signi�cant portion of cars, orders industry to
reduce emissions by 50% and closes gas stations...

What�s the chance that high levels are reached in a given area? What
happens to other areas given that a high level has been reached
somewhere?

X (t, s) = logarithm of ozone�s concentration at position s (in yellow
area) at time t...

Adler, Blanchet and Liu (2010): Algorithm for conditional
sampling with ε relative precision in time

Polyfε�1 log[1/p(high excursion)]g
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A Motivating Application

Another motivating application: Queues with Gaussian input Mandjes
(2007)

u (b) := P
�
max
k�0

X (k) > b
�

where X (�) is a suitably de�ned Gaussian process.

Blanchet and Li (2010): Algorithm for conditional sampling with ε
relative precision in time

Polyfε�1 log[1/u (b) ]g
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Importance Sampling

Goal: Estimate u := P (A) > 0 and

Choose eP and simulate ω from it

I.S. estimator per trial is

Z = L (ω) I (ω 2 A) ,

where L (ω) is the likelihood ratio (i.e. L (ω) = P (ω) /eP (ω)).eP is called a change-of-measure
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Importance Sampling

Must apply I.S. with care �> Can increase the variance

Glasserman and Kou �95, Asmussen, Binswanger and Hojgaard �00
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Importance Sampling

Goal: Choose eP simulatable and e¢ ciently as P (A)& 0.

Strong E¢ ciency: eEZ 2/P (A)2 = O (1) .
Weak E¢ ciency:

eEZ 2/P (A)2 = O �1/P (A)ε� for every ε > 0.

Polynomial E¢ ciency:

eEZ 2/P (A)2 = O (log (1/P (A))q) for some q > 0.

Strong � Weak � Polynomial
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Importance Sampling

Suppose we choose eP (�) = P ( �jA)
L (ω) =

P (ω) I (ω 2 A)
P (ω) I (ω 2 A) /P (A)

= P (A)

Estimator has zero variance, but requires knowledge of P (A)

Lesson: Try choosing eP (�) close to P ( �jA)!
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Example 1: Maximum of Gaussian Process

Let X = (Xk : k � 0) be a Gaussian process with Var (Xk ) = σ2k and
EXk = µk < 0.

Want to e¢ ciently estimate (as b % ∞)

u(b) = P[max
k�1

Xk > b]

Assume

σk � cσkHσ , jµk j � cµkHµ , 0 < Hσ < Hµ < ∞

so u(b)! 0 as b ! ∞.
No assumption on correlation structure.

Asymptotic regime known as "large bu¤er scaling".

Jose Blanchet (Columbia) Monte Carlo for Gaussian Fields Nov, 2010 12 / 29



Related Asymptotics

Rich literature on asymptotics for u (b)

Pickands (1969), Berman (1990), Du¢ eld and O�Connell (1995),
Piterbarg (1996), Husler and Piterbarg (1999), Dieker (2006), Husler
(2006), Likhanov and Mazumdar (1999), Debicki and Mandjes (2003)...
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Related Simulation Algorithms

Common basic idea is to sample Gaussian process by mean tracking the
most likely path given the over�ow, time-slot by time-slot.

T �(b)

Xt

t

b

X0
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Target Bridge Sampling

1 Identifying the
target set T ;

2 Targeting;
3 Bridging;
4 T (b) = inffk :
Xk > bg;

5 Deleting

Xt

t

b

X0X0 T (b)
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Likelihood of a Path

eP(X1, . . . ,XT (b))

=
∞

∑
k=T (b)

eP (τ = k) Z ∞

b
P(X1, . . . ,XT (b)jXk )eP (dXk ) .

Select

eP (τ = k) ∝ P (Xk > bjT (b) < ∞) ∝ P (Xk > b)

Given τ = k sample eP (Xk 2 �) = P (Xk 2 �jXk > b)
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Likelihood Ratio

eP(X1, . . . ,XT (b))

=
∞

∑
k=T (b)

eP (τ = k) Z ∞

b
P(X1, . . . ,XT (b)jXk )eP (dXk )

=
∞

∑
k=T (b)

P (Xk > b)
∑∞
j=1 P (Xj > b)

Z ∞

b
P(X1, . . . ,XT (b)jXk )

P (dXk )
P (Xk > b)

=
∞

∑
k=T (b)

P(X1, . . . ,XT (b),Xk > b)

∑∞
j=1 P (Xj > b)

=
P(X1, . . . ,XT (b))

∑∞
j=1 P (Xj > b)

∞

∑
k=T (b)

P
�
Xk > bjX1, . . . ,XT (b)

�
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Consequently, the importance sampling estimator for u (b) generated by P
is simply

L =
dP

d eP
�
X1, ...,XT (b)

�
=

∑∞
j=1 P (Xj > b)

∑∞
j=T (b) P

�
Xj > bjX1, ...,XT (b)

� .
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Special Case: Brownian Motion

Consider the case when

Xt = B (t)� t,

is a standard Brownian motion, with negative linear drift µt = t.

The likelihood ratio:

L =

R ∞
0 P(Bt � t > b)dtR ∞

T (b) P
�
Bt � t > bjBT (b) = b

�
dt
=

R ∞
0 P(Bt � t > b)dtR ∞
0 P(Bt � t � 0)dt

,

is a constant!
Zero-variance importance sampler:

eEL � L = P �max
t�0

Bt � t > b
�
= exp(�2b)

In this case TBS outputs a Brownian motion with drift +1.
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E¢ ciency Analysis

The e¢ ciency analysis involves

eE (L2)
P(maxk�1 Xk � b)2

�
�

∑∞
k=0 P(Xk > b)

P(maxk�1 Xk � b)

�2
�

�
∑∞
k=1 P(Xk � b)

maxk�1 P(Xk � b)

�2
Does not involve the correlation structure...
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E¢ ciency Analysis

Theorem
If (σk : k � 1) and (µk : k � 1) have power law type tails with power
indices 0 < Hσ < Hµ < ∞ respectively, then we have that

1 L is an unbiased estimator of u(b)

2 Let h(b) = λ
�
Hµ,Hσ

�
b
Hµ�Hσ
Hµ , then

u(b) = O(h (b)1/(Hµ�Hσ) exp(�h(b))).

3 eE �L2�
u(b)2

= O(b2/Hµ);

Polynomially e¢ cient

Strongly e¢ cient in many source scaling
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Summary of Performance Analysis (Updated)

Method Many Sources Large Bu¤er Cost of each
replication

Single twist x x O(b3)
Cut-and-twist weakly x O(b4)
Random twist weakly x O(b3)
Sequential twist weakly x O(nb3)
Mean shift x x O(b3)
BMC x x O(b3)
TBS strongly polynomial O(b3)
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Numerical Example: Fractional Brownian Noise

Test the performance of our Target Bridge Sampler and compare it
against other existing methods in the many sources setting.

Suppose that fXkg are driven by fractional Brownian noises, that is,
Cov(Xk ,Xj ) = (k2Hσ + j2Hσ � jk � j j2Hσ)/2 and µk = k.

The numerical result is compared against what was reported in Dieker
and Mandjes (2006).
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Numerical Example

b = 300 Cost of each
replication

Estimator Simulation Runs Time

Naive O(b3) 6.12� 10�4 833562 232s
Single twist O(b3) 4.84� 10�4 4038 ~60s
Cut-and-twist O(b4) 5.95� 10�4 703 ~80s
Random twist O(b3) 5.50� 10�4 3269 ~50s
Sequential twist O(nb3) 6.39� 10�4 692 ~100s
TBS O(b3) 5.84� 10�4 26 1s
Benchmark - 5.75� 10�4 -

Table: Simulation result of Example 2 with n = 300, b = 3, Hσ = 0.8.
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Discrete Version: Monte Carlo Strategy

Discrete version: (X1, ...,Xd ) multivariate Gaussian: Consider

P
�

d
max
i=1

Xi > b
�

P
�
(X1, ...,Xd ) 2 �j

d
max
i=1

Xi > b
�

Monte Carlo strategy:

1 Pick i-th coordinate with probability proportional to P (Xi > b)
2 Sample Xi given Xi > b
3 Sample the remaining values given Xi

eP ((X1, ...,Xd ) 2 �) = d

∑
i=1

P (Xi > b)P ((X1, ...,Xd ) 2 �jXi > b)
∑d
j=1 P (Xj > b)
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Discrete Version: Importance Sampling Distribution

Prob. measure

eP ((X1, ...,Xd ) 2 �) =
d

∑
i=1

P (Xi > b)P ((X1, ...,Xd ) 2 �jXi > b)
∑d
j=1 P (Xj > b)

=
d

∑
i=1

P ((X1, ...,Xd ) 2 �;Xi > b)
∑d
j=1 P (Xj > b)
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Discrete Version: Likelihood Ratio

Likelihood ratio

I (
d
max
i=1

Xi > b)
dP

d eP (X1, ...,Xd )
= I (

d
max
i=1

Xi > b)
∑d
j=1 P (Xj > b)

∑d
j=1 I (Xj > b)

�
d

∑
j=1
P (Xj > b) .
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Total Variation Approximation

Theorem (Adler, Blanchet and Liu (2008))

If Corr (Xi ,Xj ) < 1 then

P(
d
max
i=1

Xi > b) =
d

∑
j=1
P (Xj > b) (1+ o (1))

as b % ∞ and therefore

sup
A
jP((X1, ...,Xd ) 2 Aj

d
max
i=1

Xi > b)� eP ((X1, ...,Xd ) 2 A) j �! 0

as b % ∞.
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Efficient Monte Carlo for High Excursions of 
Gaussian Random Fields

Jose Blanchet
Columbia University

Joint work with 
Robert Adler (Technion‐Israel Institute of Technology ) 

Jingchen Liu (Columbia University)
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Continuous Gaussian Random Fields on 
Compacts

• Gaussian random field,

where T     Rd is a compact set.

•

•

2

⊂



High Excursion Probability

• Interesting probability

as b → ∞.

• More generally,

where Γ(·) is suitable functional.
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Asymptotic results
• Under very mild conditions

• Sharp asymptotics for mean zero and constant 
variance random fields (under conditions)

k depends on dimension of T and continuity of  f(t).

• Pickands (1969), Piterbarg (1995), Sun (1993),  Adler 
(1981), Azais and Wschebor (2005), Taylor, 
Takemura and Adler (2005).

4



The change of measure

• mes is the Lebesgue measure
• Aγ is the excursion set

• A change of measure on C(T)
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Simulation from this change of measure

6



The estimator and its variance

• The estimator

• The second moment
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The Estimator and Its Variance
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The choice of γ

• γ = b results in infinite variance

• γ = b – a/b
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The area of excursion set, mes(Ab-1/b), given high excursion
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Efficiency results – the general case
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Efficiency results – the homogeneous case
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Implementation – discretize the continuous filed

• Discretize the space T, {t1,…,tn}

• It is sufficient to choose n = (b/ε)α such that

Adler, Blanchet and L. (2010)
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Summary

• Non-exponential change-of-measure for Gaussian processes and 
fields (efficiency properties & conditional sampling) 

• Polynomialy efficient for general Hölder continuous fields

• Strong efficiency for homogeneous fields

14
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