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Optimal design of rare event simulation algorithms

Prof. Varadhan�s Abel
prize citation on large
deviations theory: �...It
has greatly expanded
our ability to use
computers to analyze
rare events."

Goal of this line of
research: To investigate
exactly HOW?
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Before I Answer How: Why Would Anybody Care?

A fast computational engine
enhances our ability to quantify uncertainty
via sensitivity analysis & stress tests...
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Performance analysis of rare event simulation algorithms

P (An) = exp (�nI + o (n)) as n% ∞ for I > 0.

Asymptotic optimality: Zn satis�es EZn = P (An) and

EZ 2n
P (An)

2 = Com (n) = exp (o (n)) .

Can still get exp (o (n)) = exp
�
n1/2�...

Su¢ cient number of replications of Zn to get ε relative error
with 1� δ con�dence:

ε�2δ�1Com (n) � > subexponential complexity in n

Total cost TC(n) = Com(n)� Cost per replication
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Tandem Jackson networks

Two node tandem network (λ, µ1, µ2)

Exponential inter-arrivals with rate λ
Exponential service times with rate µ1, µ2

Tra¢ c intensity ρ1 = λ/µ1 2 (0, 1), ρ2 = λ/µ2 2 (0, 1)
P0[Total population reaches n in a busy period]
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Tandem Jackson networks

X1 (k) = # in station 1 at transition k in embedded discrete
time Markov chain
X2 (k) = # in station 2 at transition k in embedded discrete
time Markov chain
Assume λ+ µ1 + µ2 = 1
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Intuitive sampling & counter-examples

Assume that ρ1 < ρ2 < 1 �> 2nd is bottleneck �>
λ < µ2 < µ1
Large deviations theory says: "Most likely path in �uid
scale looks like that of system (µ2, µ1,λ)"
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Intuitive sampling & counter-examples

Natural importance sampling � > simulate (µ2, µ1,λ) system

Let eK ((x1, x2) , (y1, y2)) be the transition matrix from
(µ2, µ1,λ) system

Let K ((x1, x2) , (y1, y2)) be the transition matrix from
(λ, µ1, µ2) system

Importance sampling estimator

I
�
Tn < Tf0g

� Tn�1
∏
k=0

K ((X1 (k) ,X2 (k)) , (X1 (k + 1) ,X2 (k + 1)))eK ((X1 (k) ,X2 (k)) , (X1 (k + 1) ,X2 (k + 1)))
Tn = 1st step k such that X1 (k) + X2 (k) = n.

Tf0g = 1st return time to origin.
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Intuitive sampling & counter-examples

Glasserman & Kou �95:

Previous sampler can even yield in�nite variance!

Reason: Likelihood ratio very poorly behaved when process
reaches Tn OUTSIDE most likely region!
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Summary of the introduction

Large deviations helps computers BUT much more than
direct interpretation is needed!
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Importance Sampling for Jackson Networks

Dupuis, Sezer & Wang �07: First asymptotically optimal
importance sampling for total population over�ow in tandem
networks

Dupuis & Wang �09: First asymptotically optimal importance
sampling for any over�ow event in any open Jackson
network

Note: these results guarantee only subexponential
complexity (i.e. Com(n) = exp(o(n)) replications)
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Finitely many gradients
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Systems corresponding to gradients
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Randomized selection of gradients at each step

At each step randomize selection of gradient depending on
current state

The i-th gradient at position y is selected with a probability
proportional to

wi (y) � exp
�
�n[ai � θTi y ]

�
Weight corresponds to the probability of "exiting" through the
corresponding point induced point by the gradient assuming
one is on the corresponding �uid path at position y

NOTE: One applies the same rule EVEN if we are not in the
corresponding �uid path!
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Importance Sampling for Jackson Networks

Theorem (B., Glynn and Leder 2010)

A slight variation of the algorithm by Dupuis, Sezer & Wang �07
satis�es

Total cost = TC (n) = O
�
n2(d+1�β)

�
,

where β = # of bottleneck stations.and d = # of stations.

Highlights of proof:

A) Translate subsolution into an appropriate Lyapunov
inequality
B) Insight into selection of various "molli�cation"
parameters
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Splitting for Jackson Networks

Splitting levels
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Splitting for Jackson Networks

First transition
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Splitting for Jackson Networks

Replacement by identical copies & reweighting
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Splitting for Jackson Networks

Subsequent transitions: advancing
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Splitting for Jackson Networks

Subsequent transitions: reweighting
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Splitting for Jackson Networks

One more transition and killing
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Splitting for Jackson Networks

Say want to compute Px (Tn < T0)

Single replication of estimator, starting at x (previous
illustration x = 0)

Nn (x) /r ln(x )

Nn (x) = # of particles that make it to total population = n

ln (x) = # of levels to reach total population = n
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How to select the levels

Dupuis & Dean �09 (general), Villen-Altamirano �09
(conjecture Jackson)

Heuristic: Controlling total expected # of particles yields

r ln(x )Px (Tn < T0) = exp (o (n))

If Px (Tn < T0) � exp
�
�n[a� xT θ�]

�
ln (x) log r � n[xT θ� � a] = o (n)

Pick ln (x) = n[xT θ� � a]/ log(r)

Conclusion: Select splitting levels according to level curves of
a VERY SPECIFIC linear function



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

How to select the levels

Dupuis & Dean �09 (general), Villen-Altamirano �09
(conjecture Jackson)

Heuristic: Controlling total expected # of particles yields

r ln(x )Px (Tn < T0) = exp (o (n))

If Px (Tn < T0) � exp
�
�n[a� xT θ�]

�
ln (x) log r � n[xT θ� � a] = o (n)

Pick ln (x) = n[xT θ� � a]/ log(r)

Conclusion: Select splitting levels according to level curves of
a VERY SPECIFIC linear function



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

How to select the levels

Dupuis & Dean �09 (general), Villen-Altamirano �09
(conjecture Jackson)

Heuristic: Controlling total expected # of particles yields

r ln(x )Px (Tn < T0) = exp (o (n))

If Px (Tn < T0) � exp
�
�n[a� xT θ�]

�
ln (x) log r � n[xT θ� � a] = o (n)

Pick ln (x) = n[xT θ� � a]/ log(r)

Conclusion: Select splitting levels according to level curves of
a VERY SPECIFIC linear function



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

How to select the levels

Dupuis & Dean �09 (general), Villen-Altamirano �09
(conjecture Jackson)

Heuristic: Controlling total expected # of particles yields

r ln(x )Px (Tn < T0) = exp (o (n))

If Px (Tn < T0) � exp
�
�n[a� xT θ�]

�
ln (x) log r � n[xT θ� � a] = o (n)

Pick ln (x) = n[xT θ� � a]/ log(r)

Conclusion: Select splitting levels according to level curves of
a VERY SPECIFIC linear function



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

How to select the levels

Dupuis & Dean �09 (general), Villen-Altamirano �09
(conjecture Jackson)

Heuristic: Controlling total expected # of particles yields

r ln(x )Px (Tn < T0) = exp (o (n))

If Px (Tn < T0) � exp
�
�n[a� xT θ�]

�
ln (x) log r � n[xT θ� � a] = o (n)

Pick ln (x) = n[xT θ� � a]/ log(r)

Conclusion: Select splitting levels according to level curves of
a VERY SPECIFIC linear function



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

Particles and Large Deviations Analysis

Theorem (B., Leder and Shi �09)

The large deviations splitting rule of Dupuis & Dean �09 has
complexity

TC (n) = O
�
n2β+1

�
β = # of bottleneck stations.

Key idea: understand conditional distribution of network at
subsequent milestone events!



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

Summary

Guaranteed cost of well selected state-dependent
samplers (tandem) O

�
n2(d�β+1)

�

Guaranteed cost of splitting (general) O
�
n2β+1

�
Keep in mind that benchmark is solving linear system with
O
�
nd
�
unknowns!

(Ku) (x) = u (x) subject to u (x) = 1 x 2 An



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

Summary

Guaranteed cost of well selected state-dependent
samplers (tandem) O

�
n2(d�β+1)

�
Guaranteed cost of splitting (general) O

�
n2β+1

�

Keep in mind that benchmark is solving linear system with
O
�
nd
�
unknowns!

(Ku) (x) = u (x) subject to u (x) = 1 x 2 An



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

Summary

Guaranteed cost of well selected state-dependent
samplers (tandem) O

�
n2(d�β+1)

�
Guaranteed cost of splitting (general) O

�
n2β+1

�
Keep in mind that benchmark is solving linear system with
O
�
nd
�
unknowns!

(Ku) (x) = u (x) subject to u (x) = 1 x 2 An



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

Generalities

Nicola & Juneja �05, Anantharam et al �90

Keep in mind for the moment 2 node tandem network

Notation x = (x (1) , x (2)), x0 = (x0 (1) , x0 (2)), similarly xk
& y ...

Underlying Markov transition matrix K (x , y), steady-state
distribution π (x)

Time-reversed Markov chain

K (y , x) =
π (x)K (x , y)

π (y)
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A general identity

Tn = 1st time to reach total population = n

Tf0g = 1st return time to origin

Tfxg = 1st time to hit x

P0
�
Tn < Tf0g,Tfxg < Tn ^ Tf0g

�
= ∑

admissible
paths :fx0!x1!...!xTn g

f
K (x0, x1)| {z }
x0 = 0

�...�
continuation

region & NOT = x

K
�
xTfxg�1 , x

�
K
�
x , xTfxg+1

�
| {z }

x = xTfxg

�...�
cont.
region

K (xTn�1, xTn )| {z }
xTn 2 population = n

g
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Towards a useful identity

P0
�
Tn < Tf0g,Tfxg < Tn ^ Tf0g

�
=

1
π(x0) ∑

admissible
paths

π (x0)K (x0, x1)| {z }
K (x1, x0)π (x1)

� ...�K (xTn�1, xTn )

=
1

π(x0) ∑
admissible
paths

K (x1, x0)� ...�K (xTn�1, xTn�1)π (xTn )

=
1

π(x0) ∑
admissible
paths

π (x 0 )K
 (x 0 , x

 
1 )� ...�K 

�
x Tn�1, x

 
Tn

�

Where x k = xTn�k for k = 0, 1, ...,Tn
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Towards a useful identity

What are the admissible paths in terms of the x k �s?

T f0g = 1st time to hit the origin

T n = 1st return time to get total population = n

T fxg = 1st hitting time to x

Admissible paths satisfy

T f0g < T
 
n ,T

 
fxg < T

 
n ^ T f0g

Admissible starting position

y 2 Dn := fy 2 population = n & Py [T f0g < T n ] > 0g
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A useful identity

Lemma

P0
�
Tfxg < Tn ^ Tf0g

�
Px (Tn < T0)

= P0
�
Tn < Tf0g,Tfxg < Tn ^ Tf0g

�
=

1
π (0)

Eπ[PX 0 [T
 
f0g < T

 
n ,T

 
fxg < T

 
n ^ T f0g]I (X 0 2 Dn)]
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A useful identity

Conclusion:

Px (Tn < T0) =
Eπ[PX 0 [T

 
f0g < T

 
n ,T

 
fxg < T

 
n ^ T f0g]I (X 0 2 Dn)]

π (0)P0
�
Tfxg < Tn ^ Tf0g

�
Note P0

�
Tfxg < Tn ^ Tf0g

�
� P0

�
Tfxg < Tf0g

�
> 0 if

x = O (1).

Focus on x = 0 for simplicity, then
P0
�
Tfxg < Tn ^ Tf0g

�
= 1.



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

A useful identity

Conclusion:

Px (Tn < T0) =
Eπ[PX 0 [T

 
f0g < T

 
n ,T

 
fxg < T

 
n ^ T f0g]I (X 0 2 Dn)]

π (0)P0
�
Tfxg < Tn ^ Tf0g

�
Note P0

�
Tfxg < Tn ^ Tf0g

�
� P0

�
Tfxg < Tf0g

�
> 0 if

x = O (1).

Focus on x = 0 for simplicity, then
P0
�
Tfxg < Tn ^ Tf0g

�
= 1.



Introduction IS for Jackson Networks Splitting for Jackson Networks Time-reversed Bridge Sampling for Jackson Networks

Implications of the identity for simulation

P0 (Tn < T0) =
Eπ(PX 0 [T

 
f0g < T

 
n jX 0 2 Dn ])Pπ (X 0 2 Dn)

π (0)

Suppose:

1 Can estimate Pπ (X 0 2 Dn) in O (1) time
2 Can sample X 0 jX 0 2 Dn under π (�) in O (1) time
3 Can simulate fX k : k � T�0 g on T f0g < T n given
X 0 2 Dn in O (n) time

Conclusion: Can estimate P0 (Tn < T0) in O (n) time
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General identity for Jackson networks

How to simulate fX k : k � T�0 g on T f0g < T n given
X 0 2 Dn in O (n) time?

Lemma

inf
y2Dn

Py [T f0g < T
 
n ] > 0

Key steps in the proof:

1 Intersect with event that K people live before any arrival so
jjy jj1 = n�K

2 Exists compact set C & m, a > 0 such that
supy /2C [Ey [jjX m jj1 � jjy jj1] � �a < 0

3 Use Cherno¤�s bound and a union bound argument to show
that if jjy jj1 = n�K for K large enough

Py [T n < T f0g] � ε
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n jX 0 2 Dn ]) is easily estimated if we

know how to sample X 0 jX 0 2 Dn under π
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Conditional steady-state distribution

How to estimate Pπ (X 0 2 Dn) and sample X 0 jX 0 2 Dn
under π (�) in O (1) time?

Observation y 2 Dn IF AND ONLY IF jjy jj = n AND at least
one "receiving stations" is NON-empty

So concentrate on X�0 (1) + ...+ X
�
0 (d) = n� receiving

stations
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Conditional steady-state distribution

How to estimate P
�
X�0 (1) + ...+ X

�
0 (d) = n

�
, X�0 (j)

independent Geometrics (maybe di¤erent parameters)?

First try: Exponential tilting!

Well... good (subexponential complexity) but NOT O (1)
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Conditional steady-state distribution

Lemma
It is possible to design a sequential importance sampling estimator
for

P (M1 + ...+Ml = n)

with likelihood ratio O (P (M1 + ...+Ml = n)), where Mi�s are
independent negative binomial. Thus, one obtains both a strongly
e¢ cient estimator and a conditional sampler both with O (1)
complexity.

Family of samplers: Sort from heavier to lighter tail & use
mixtures

p (i , n� s)P (Mi = k jMi � n� si )
+q (i , n� s))P (Mi = n� si � k jMi � n� si )

Select probabilities p (i , n� s) sequentially where
s = M1 + ...+Mi�1
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Main result

Theorem (B. 2010)

Given a Jackson network one can estimate

P0 (Tn < T0)

and simulate conditional paths given Tn < T0 with optimal
running time (O (n) complexity).

Identity

π (0)P0 (Tn < T0) = Eπ(PX 0 [T
 
f0g < T

 
n jX 0 2 Dn ])Pπ (X 0 2 Dn)

Event T f0g < T
 
n jX 0 2 Dn is not rare for backward process

Whole problem is on X�0 (1) + ...+ X
�
0 (d) = n... plenty of

tools!
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Conclusions and remarks (what did I say?)

Large deviations helps computers BUT much more than
direct interpretation is needed!

Lyapunov adaptation of subsolutions yields complexity
O(n2(d�β+1)) for (tandem)
Guaranteed cost of splitting (general) O(n2β+1)

New algorithm: time-reversed sampling yields optimal
O (n) complexity (general)
Main features of new algorithm appear common to most
quasi-reversible queues
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