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MANY-SERVER LOSS SYSTEM

o Loss system: GI/GI/s/0 no waiting room >
customers are lost if all servers are busy...

o Assume s = # of servers large

o Focus of this talk:
o Computing loss probabilities / overflow events
e Conditional distribution at the time of a loss

o Also discuss systems with time varying / Markov
modulated arrivals
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MANY-SERVER LO0OSS SYSTEM: THE MODEL
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APPLICATION 1: LONG DISTANCE LINES

e A local company sets
up long-distance call
lines

e “Customers”’ are the
employees (can be

over 5000 1n big
companies)

e “Service times” are
the call holding
times

How many call lines
should be set up to
guarantee a loss
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probability of less than,

say 0.1%?




APPLICATION 2: TELECOMMUNICATION
SWITCHES

* Digital switches provide connections among phone
calls, internet etc.

e Switch holds a buffer capacity; packets beyond the
capacity are rejected

* What is the value of buffer capacity to achleve a loss
probability typically in the order of 10777
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APPLICATION 3: INSURANCE PORTFOLIO

* Alife insurance company sells insurance contracts to policyholders
* Policyholders pay regular (or lump-sum) premium to the company; in

return, the company pays benefit to policyholders in the contingent even

(e.g. death)
* “Customers” are the policyholders

» “Service times” are the times to contingent event (or the tenor of
contract, if shorter)

* Large insurance companies have millions of policyholders

* The cash flow of insurance company is a functional of the statuses of
customers in the system:

net cash position = net discounted premium received
+ net discounted benefit paid

* What is the probability that the insurance company suffers from
insolvency?
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IMPORTANT FEATURES OF MANY-SERVER
LLOSS SYSTEM
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* Many servers! (order of 10% to 103 depending
on context)

* Customers arrive frequently i.e. heavy traffic
* Stable system
» Loss event is rare (order of 1073 to 10™°)

* Other features: time-varying, limited waiting
room capacity etc.
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THE BASIC MODEL

Customers arrive according to a
renewal process with rate As i.e.
interarrival times U; are i.i.d. with
mean 1/(4s)

Server 1

Server 2

Server 3

Server 4

Server s

Service times 1} a

i.i.d.
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THE BASIC MODEL

otes:

« State-space of the process (if insisting on being Markov) at a time ¢ is high-
dimensional (measure-valued). It consists of:
— Number of customers
— Residual service time for each present customer
— Age of the process since last arrival

* One convenient way of encoding the state:

¥(t) = (Q(t,¥), B()) €D x R,

Q(t, ¥): number of customers at time £ who have residual service times larger than y
B(t): age of process since last arrival

« Trafficintensityp = AEV < 1 = stable system
* Technical assumptions:

— Interarrival times U; possess exponential moments i.e. Ee®Ut < oo for some 8 in a
neighborhood of 0

— Service times V; have bounded support
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MAIN GOAL OF THE TALK

& Provide an “optimal” importance sampling algorithm to
estimate the steady-state loss probability

* Main Motivations:
— Analytical solution not available except Poisson arrival

— Typical order of magnitude ~ 1073 t0 10~° = crude
Monte Carlo is inefficient, if not infeasible

* More motivations:

— Since our simulation is pathwise, other quantities of
interest can be simulated e.g. conditional expectation of
functional of the statuses of customers before loss
happens

— The algorithm can be generalized to a range of more
complicated models
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CRUDE MONTE CARLO SCHEME
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CRUDE MONTE CARLO SCHEME
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service
time at
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M

N

uIo)SAS

OT}SBYO0)S J10J UOTJR[NUIIS JUIAI-IICY

N

7

Arrival

timee




CRUDE MONTE CARLO SCHEME

Required

service
time at
arrival

M

W)SAS

o
OT3SBYD0)S J0J UOTJBTNITS JUIA-DIBY

7

Arrival

time
W o




CRUDE MONTE CARLO SCHEME
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service
time at
arrival

M

N

uIo)SAS

OT}SBYO0)S J10J UOTJR[NUIIS JUIAI-IICY

N

Arrival

timea




CRUDE MONTE CARLO SCHEME

® Run the process for a long time

o P(loss) =

# loss

As X total time units simulated
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A NUMERICAL EXAMPLE

Parameters/Assumptio §=100,4=1,EV; =05
Poisson arrival with rate As = 100

ns.
Service time V; ~ U[0,1] )

Loss probability calculated from 1.630319 x 10~ 1°
Erlang’s loss formula
Running time to simulate 1000 5.16 seconds
time units using crude Monte
Carlo
Approximate number of customers 1000 x 100 = 10°

that can be simulated i1n this time

Approximate time to simulate one 1/(1.63031 x 10719)
loss event 105

X 5.16 = 3.66 days

Approximate time to simulate 100 366 days
loss events

18y




Rare-event simulation for stochastic
system @

OUR ALGORITHM...



ORGANIZATION OF THE TALK

1. Introduce notions in rare-event simulation

2. Explain in detail our importance sampling
scheme

3. Algorithmic efficiency

1. Generalizations e.g. renewal arrivals, Markov-
modulation, time-varying system
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LITERATURE REVIEW

o Central Limit Theorems / diffusion

approximation: Iglehart (1965), Halfin and Whitt
(1981), Reed (2007)...

o Rare event analysis / large deviations:

e most papers are on queues with single server /
several servers, e.g. Asmussen (1982), Anantharam
(1988), Sadowsky (1991, 1993), Frater et al. (1989,
1990, 1991, 1994), Glasserman and Kou (1995),
Dupuis et al. (2007), Lehtonen and Nyrhinen (1992),
Chang et al. (1993, 1994)

e Many-server queues under heavy traffic: Glynn
(1995), Szechtman and Glynn (2002), Ridder (2009)

wWo)SAS

O1)SBD03S J10J UOIJR[NWIS JUSA-DIBY]




FUNDAMENTAL CHALLENGE OF RARE-
EVENT SIMULATION

o)

Suppose one wants to estimate P(4,,) Y 0asn 7 o

Crude Monte Carlo estimator i.e.
N
1
= 1(A1)
i=1

gives unbiased estimate with variance

2 P(An) (L~ P(An))

Relative error (coefficient of variation) defined by the ratio of standard deviation to mean

gives

1- P(A'n)
NP(Ap)

N ~ 1/P(A,,) number of samples is required to retain reasonable level of relative error
If P(A,,) is exponentially small in n, number of samples required also blows up exponentially

inn
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IMPORTANCE SAMPLING

t Forillustration let 4, = {S, € X} where S, has density f(-)
* Instead of sampling from density £(-), we sample from f(-)

+ Likelihood ratio L(S..) = £&n)

f(x)

f(x)

S, €X
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IMPORTANCE SAMPLING

Beﬁnit:’on 1: An estimator is called strongly efficient if its relative error is bounded inn i.e.

E(L(S)1(S, € X))°
P(S,, € X)?

<C

for all n.

Definition 2: An estimator is called asymptotically optimal, or logarithmically efficient, if

| log E(L(S)1(S, € X))
lim sup =
n/ oo logP(Sn eEX)

Note:

1. If P(S, € X) — 0 exponentially in n, then Definition 2 means that the second

moment of the estimator decays in twice the exponential rate as P(S,, € X)
2. A zero-variance sampler has a density

f(x)1(x € X)
P(S, € X)
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A SIMPLE (SIMPLEST) EXAMPLE...

e, Consider P(S,, > an) where S Sp = = X, X;, X; arei.i.d. rv/s with
EX; = 0and ¥(8) = log Ee%%i < oo for all 6 € R,anda >0

e By Law of Large Numbers, P(S,, > an) > 0asn 70

* Consider the importance sampling scheme where the probability
dlstrlbutlon of each Xj is tllted along its exponential family so that
= aie. db = e? Xi=¥() dp where 6" is the solution to

w()—a

e Cramer’s Theorem:
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P(S, > an) = E[e~"5n*t¥(6%); 5, > qgn]
— e—B*an+mp(9*) E'[ ees (an—Sn); Sy, > an] ~ e—nI(a)

where I(a) = 8*a — (8%) is called the rate function in large

deviations theory @




NOTES FROM THE EXAMPLE

e, The proof of large deviations suggests a natural
importance sampling scheme

* This scheme can be shown to be asymptotically
optimal:

E(L1(S, > an))*=E[L;S,, > an]
— E[e—9*5n+n¢(9*); Sn > an]
— e—nl(a)E[ee*(an—Sn);Sn S an] ~ e—ZnI(a)
* The importance sampling scheme mimics the zero-
variance sampler in the sense that
P(X, € By, ...,X, € B,|S,, > an) » P(X; € By) - P(X,,
€ B,)
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for all Borel sets B4, ..., B, @




LARGE DEVIATIONS AND IMPORTANCE
SAMPLING

¢, Contrary to central limit theorems where information on
moments is enough, large deviations typically depend on
the behavior of the moment generating function

* Gartner-Ellis Theorem as a generalization of Cramer’s
Theorem: Under regularity conditions, suppose a random
object 5,, possesses Iogarlthmlc moment generating
function wn(a) log Ee%5n such that 1, (0) =

llmn_],OO U, (8) (Gartner-Ellis limit) exists on a sufficiently
large enough mterval of 8, then
lim —logP (S, eX) = égjfcl(a)

n-oon

where [(a) = supger(8, a) — Y(0) is the rate function
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LARGE DEVIATIONS AND IMPORTANCE
SAMPLING

To find an optimal importance sampler for large
deviations event...

o Formulate Gartner-Ellis limit of the random
object

o Decode from the limit the contributions of more
“elementary” objects that lead to the rare event

o In many cases (but not all), the naturally
suggested sampler 1s asymptotically optimal
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BACK TO OUR PROBLEM...

o Do we know the Gartner-Ellis limit of the
random object 1.e. the steady-state loss
distribution?

o Problem reformulation
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CRUDE MONTE CARLO REVISITED

® Run the process for a long time

 P(loss) f Loss
As X total time units simulated

Require
d
service s
time at .
drrival . .
( J
® o
Vo . { ‘ . .
v =0 C
_— 4 _ 4 Ts Arrival
Un U, time
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A REGENERATIVE VIEW

%, Suppose A € D X R, is a regenerative set of the system

Kac's formula:
EsNy

B,(loss) = BET,

Notations:
— N4 = number of loss before reaching 4 again
— T4 = time units to reach A4 again
— E4[-] = expectation with initial state in steady-state conditional on
beingin A

If we choose A to be a “good” seti.e. it does not take exponential
amount of time to reach, then crude Monte Carlo is equivalent to
using sample mean for both numerator and denominator

Mixing guaranteed by finite support assumption on service time
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A REGENERATIVE VIEW

Regenerationis hit.
A sample of N, and DX R,

T, is recorded / & 3
S &

3

=4

Cycle §

starts Y

=

=]

4 g

=

o

® Another regeneration is

hit. Another sample of N,

and 7, is taken @




“SPLITTING” ALGORITHM

® Do importance sampling on the numerator

* Run crude Monte Carlo; every time 4 is hit,
“split” the path into two: one continue with
original evolution; another is applied with
importance sampling to get a sample of N,.

Then continue with the original path
weighted sum of N,
P(loss) =

As X total time units
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“SPLITTING” ALGORITHM
An importance

Another Ny is sampling sample of

Regeneration s hit. recorded Ny is recorded

A sample of 74 is DXR,

recorded. “Split” /

the chain again
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Regeneration £
N\ is hit. “Split” -
1into two chaing
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A 2
2
=
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® Another regenerationis

hit. Another sample of 74
is taken. Continue
procedure

o




What is a good choice of set A?

A should be occupied frequently (but not too frequently!) in steady-state
When s is large, one can use Central Limit Theorem to approximate the “central limit” region of
(Qty).B(1)) EDXR,

(Pang and Whitt (2008)) Suppose there is no capacity constraint i.e. number of servers is infinite
(but arrival rate is still As), then

Qy) — s [, Fudu
ﬁ ~ (y)

where Z(y) is a Gaussian process with

Var Z(y) = lczf F(u)?du + AJ FWF (u)du
y v
We can choose

A=1{0(t,y) € (As f mF(u)du - sd(Z(y))s s f mF(u)du + sd(Z(y))\(E) JEE(A 24, ..}

y y
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KEY QUESTIONS
® Qur problem becomes estimating E,. N, for
somer €A

* Do we have information from large deviations
theory (i.e. Gartner-Ellis limit)?

* How does the rare event i.e. loss happen?

* Does the intuition give an asymptotically
optimal estimator (or more)?
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A SIMPLER PROBLEM

® Consider a simpler problem in which Gartner-
Ellis limit can be computed:

— A “coupled” system that has no capacity
constraint i.e. number of servers is infinite

— Fix a time horizon t and initial state, say 0

* What is the probability that there are more
than s customers in the system at time t?
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SOLUTION TO THE SIMPLER PROBLEM

% Thisis mathematically

P(Q(t) > s)

N(t)
Qt)= ) 1(V;>t-4)
2

is the number of customers in the system at time ¢
* Gartner-Ellis limit

L
e (0) = f y (log(e? F(t — u) + F(t — u)))du
0

where Yy (*) is the infinitesimal logarithmic moment generating
function of the arrival process

where
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IMPORTANCE SAMPLING FOR THE SIMPLER

PROBLEM

Required
service
time at
arrival

M

e e o o o o o o o = == =

-

ﬂ R L . ] N § &R |
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IMPORTANCE SAMPLING FOR THE SIMPLER
PROBLEM

1. Arrival rate is accelerated towards t by tilting the interarrival times U; by
Yy (log(e"" F(t—A;)+F(t— Ai))

n ;U]
=
. wn
Required s=4 c ¢
service A I 3
. +
time at I %
arrival I :
M =
=
=}
=
R
w
3
=
2
=
V=0




IMPORTANCE SAMPLING FOR THE SIMPLER
PROBLEM

1. Arrival rate is accelerated towards t by tilting the interarrival times U; by

Yy (log(e? F(t— A;)) + F(t — 4p)) -
2. Service time density is increased by a factor of ¢ inside the triangle

Required s=4
service \
time at

arrival M

time
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INTUITION FOR OUR PROBLEM

Given an initial state 7 € 4,

E Ny = E.[Ny; Tg < T4] = Pr(Ts < 74)

~) Bl =t<1) = ) QM) >5) = BQ(t") > 5)
t t

~ e Sl

Idea 1: Before the first loss, the system acts the
same as if there are infinite number of servers

Idea 2: Since time horizon for loss 1s not fixed,
we shall randomize the time horizon (also
preventing blowing up variance due to non-
optimal sample paths)

AS
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Algorithm for E,.N,

Required s=4
service i
. wm pd
time at [ R
arrival I o
M I S
5
i @
[ 2
i =y
I S
1 g
:
i 5
)]
[ =2
V=0 : g
T Arrival

Step 1: Sample a random time 7 according to

p time
P(T=T+k5)=n-2(k+1)2 Q




Algorithm for E,.N,

Required s=4
service 1
time at 3 g
arrival M 5 %
5
%.
3
=
%
V=0 ”
T Arrival
Step 2: Run the sequential importance sampler as in time
the simpler problem, pretending infinite number of @
servers and time horizon of the realized 7, until T3 A T4




Algorithm for E,.N,

Required s=4
service /
time at 3 g
arrival M 5 %
5
%.
3
=
° &
V=0 ”
T Arrival
Step 2: Run the sequential importance sampler as in time
the simpler problem, pretending infinite number of @
servers and time horizon of the realized 7, until T3 A T4




Algorithm for E,.N,

Required s=4
service 1
time at 3 g
arrival M 5 %
5
E.
3
=
V=0 ”
Ts 1 Arrival
Step 2: Run the sequential importance sampler as in time
the simpler problem, pretending infinite number of °
servers and time horizon of the realized 7, until T3 A T4




Algorithm for E,.N,

Required s=4
service /
time at 3 g
arrival M 5 %
5
E.
3
=
° &
V=0 ”
Ts 1 Arrival
Step 2: Run the sequential importance sampler as in time
the simpler problem, pretending infinite number of @
servers and time horizon of the realized 7, until T3 A T4




Algorithm for E,.N,

Required s=4
service A
time at :F
. s
arrival M 5 g
5
@,
3
c
5
+
=
° =
. 2
S
=
7]
=
V=20

Ts T Arrival
Step 3: If 75 is hit first, continue the process under the

=P ) time
original measure until 74 @




Algorithm for E,.N,

Required s=4
service
time at
arrival M

axey

Until 4 is hé

o
o
 —
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Ts Arrival
Step 3: If 75 is hit first, continue the process under the

=P q time
original measure until 74 @




ASYMPTOTIC OPTIMALITY

B1e likelihood ratio for the algorithmunder 7, < 7, is
1

Y. P(r=t)l, (Y, 0<u<t)
where L, is the likelihood ratio conditional on T = t given by

LY,0=su<st)=

N(tg)-1 N(zg)-1
expis Z pn(log(e®F(t - 4) + F(t - 4)))U; - 6, Z 1(V; >t - 4)
i=1 i=1
fort > 7 and
N(D) N(t)

exp4 s Z Yy (log(e%F(t — A) + F(t — A)))U; - 6, Z 1V, >t - 4)
i=1 i=1

fort < 1,
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ASYMPTOTIC OPTIMALITY

Hwe likelihood ratio is bounded from above by

L
[7s] < c[TS'IZe—SIt*+9[-:s]R[Ts:rTs]]
P (T -~ [Ts]) < =
Required s=4 é* E
service \ §
time at R[zs, [751] o
. =
arrival M fz
4
V=20

Arrivag

time




ASYMPTOTIC OPTIMALITY

& Second moment of likelihood ratio is
E[NZL% 1, < 14) = E[NAL; 14 < 4]
< ce St E[emsRlEsltll 7 < 7))
* When 7 is sampled at scale O (1),

S
— For the case of Poisson arrival, given T, R[Ts, [T5]] ~

Binomial(s,p) where p is the ratio of purple area to
trapezoid

— For general case, condition on the arrival times of the
contributing customers

* One can get a logarithmic bound of e ~25!¢*
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ASYMPTOTIC OPTIMALITY

yweorem: We have

1
llfrgloglogP(loss) = —[}

where t* = argmin I; and

Wo)SAS
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1 .
lim—log E[NZL?; 1, < T4] = =21
s/ S

Hence the algorithm is asymptotically optimal.

Sketch of Proof:

* Lowerbound lims,m%log P(loss) = —I» is established by explicitly
identifying the optimal sample path

* For upper bound,

1 1 -
—2I,+ < lim—log P(loss)? < ;i’m;logE[NjLz;rs < Ty] € =21 @

s/ §




SIMPLIFICATION AND EXTENSIONS

Eor Poisson arrival,

* A faster algorithm can be obtained by, after sampling 7,
generating Q(t) using tilted measure and then sampling
the customers exploiting the Poisson random measure
description

* |tisinteresting to note that the seemingly more powerful
idea of conditionally sampling ¥,,,0 < u < t|Q(t) (instead
of exponential tilting) will blow up the second moment of
the likelihood ratio at a neighborhood of the time of first
loss, due to “discontinuity” of the likelihood ratio at 7

* However, this works for a discrete version of the process
(Blanchet, Glynn and Lam (2009))
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SIMPLIFICATION AND EXTENSIONS

& The case of Markov-modulated arrivals can be
simulated by restricting set A to the optimal Markov
state i.e. the state that gives the highest arrival rate

* The case of both Markov-modulated arrivals and
(possibly correlated) service times can be simulated by
augmenting the state-space to identify the residual
service times of customers who enter at each Markov
state

* Time-varying arrivals (in this case we are interested in
loss during an interval instead of the steady-state) can
be simulated using exactly the same methodology
(with truncation of 1)
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