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Assortment Planning Problem

How to Estimate?

Choice Model

7;(S) = P(customer selects item j when offer set is S)

How to Optimize?

Assortment Problem

Find Sto max Z r; - 7;(S)
JjeS




Choice Model

Ordered preference list (permutation) of items
Customer selects the most preferable item available
Most general choice model: distribution over all permutations

Tradeoffs
= Complex choice model: hard to optimize
= Simple choice model: not rich enough



Common Choice Models

= Multinomial Logit model: MNL (Plackett-Luce, MacFadden (1974))

= utility parameters: w; for item i, attribute w+X; & X;’s i.i.d. Gumbel.

= choice probabilities m;(S) = 5 e " (S, =S uU{0}
i€eSy

Model Selection: which is the right model?

= True choice model is latent
= We only observe choice or sales data
= Error in model selection can lead to highly suboptimal decisions




Related Work

Smith and Agrawal (2000), Netessine and Rudi (2003): two-step
dynamic substitution.

Other dynamic substitution & data inference: Saure and Zeevi
(2009), Rusmevichientong and Topaloglu (2009).

Farias et al. (2010)

» Estimate distribution over permutation with sparsest support consistent data
= Can efficiently provide estimator under some conditions

Vulcano, van Ryzin, Ratliff (2012)
= EM algorithm to estimate a semi-parametric family of choice models



This Talk

Markov chain based “Universal” choice “model” (really a
computational tool).

Can be estimated efficiently
= O(n?) parameters

Universal approximation for all random utility models
= Exact if the underlying model is MNL
= Good approximation bounds for general random utility model

Efficient assortment optimization



Markov Chain Based Model

= New primitive for substitution behavior

No purchase alternative

If i IS not available

= No transitions out of state O
= Markovian model
= After transition to state j, customer behaves like first choice being |

= Specified by O(n?) transition probability parameters




Estimating Markov Chain Model

)\z' = WZ(N)

No purchase alternative

If I IS not available

Pij =

i (N \ {i}) — m;(IV)

™ (V)

Fraction of customers who select j
given the first choice is i



Estimating Markov Chain Model

» Suppose distribution over permutation o given by p(o)

A = P(o(1) =1)

pij =P (0 (2) =jlo(1) =1)



Estimating Markov Chain Model

i (N \ {7}) — 7;(IN) Fraction of customers who select |
Pij = (V) given the first choice is i

» Datarequired to estimate the model
7 (N), 75 (N \ {z}), Vi, j

= Choice probability data for n offer sets

= Given S we can estimate

o TS\ = my(S) |

fi,j €S




Computing Choice Probability Estimates

= Define Markov chain for offer set S: M(S)
» All states in S (including 0) are absorbing states

= Estimate of choice probability of itemjin S

7;(S) = P(M(S) absorbs in state j given initial arrival probabilities A; )

= Can be computed efficiently for any |, S

= No closed form expression "



Approximation Bounds: MNL Model

= Suppose underlying model is MNL with parameters u; for all i

Pij = S — = m;(N\ {7})

Theorem 1 If the underlying model is MNL with parameters u; forallt = 0,...,n.
Then for any offer set S C [n]| and 3 € S,
A u )
7t5(S) = —— = m;(S)
Z’I',ES+ Uu;
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Approximation Bounds: Other Models

McFadden and Train (2000)
= Every random utility based model can be approximated
arbitrarily closely by a mixture of MNL

Suffices to prove approximation bounds for mixture models

= Consider a mixture of MNL model with K segments
= Probability of segment k is 6,

= Parameters for segment k: ug, ..., ul

= Assume wlog. uf§ +...+uf =1

Choice Probability: uk
m;(S) = Z 9k :

’LES+ ’I,
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Approximation Bounds: MMNL Model

MMNL model (with K segments)

K ¥
o= P( seement k | first choice is ) + —2—
ng ’;1 ( g | ) 1 . ’U,,,f

Theorem 2 [f the underlying model is mixture of MNL with K segments,
probabilities 0y, of segment k, and MNL parameters uf, ... u*. For any

offer set S C [n), let « = maxy, u*(S). Then for any j € S,

;i (8) (1 —a®) < 7;(8) < (1+%/(1 - )

For a=0.5, we get a 0.75-approximation for choice probabilities
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Approximation Bounds: MMNL Model

An example (2 classes of customers completely asymmetric utilities)
shows that bounds are sharp.

Numerical experiment with random u;’s & report average over 500
randomly picked offer sets S (of sizes 30% to 60% n).

Average worst case relative error
in choice probabilities
Case n K=log(n) errMC(%)
1 10 3 3.1
2 20 3 2.4
3 30 4 2.5
4 40 4 2.4
5 60 5 1.9
6 80 5 1.6
7 100 5 1.6
8 150 6 1.2
9 200 6 1.1
10 500 7 0.8
11 1000 7 0.6




Approximation Bounds: MNL Model

= Suppose underlying model is MNL with parameters u; for all i

Pij = S — = m;(N\ {7})

Theorem 1 If the underlying model is MNL with parameters u; forallt = 0,...,n.
Then for any offer set S C [n]| and 3 € S,
A u )
7t5(S) = —— = m;(S)
Z’I',ES+ Uu;
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Approximation Bounds: Other Models

McFadden and Train (1996)
= Every random utility based model can be approximated
arbitrarily closely by a mixture of MNL

Suffices to prove approximation bounds for mixture models

= Consider a mixture of MNL model with K segments
= Probability of segment k is 6,

= Parameters for segment k: ug, ..., ul

= Assume wlog. uf§ +...+uf =1

Choice Probability: uk
m;(S) = Z 9k :

’LES+ ’I,
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Approximation Bounds: MMNL Model

MMNL model (with K segments)

uk

K
T P( seegment k | first choice is ) - J
Pij /;::1 ( seg | )= "

Theorem 2 If the underlying model is mixture of MNL with K segments,
probabilities 0y, of segment k, and MNL parameters uf, . .. u*. For any

offer set S C [n), let & = maxy, u®(S). Then for any j € S,

#;(8) > m;(S)(1 — a?)

For a=0.5, we get a 0.75-approximation for choice probabilities
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Assortment Optimization

= Optimization Problem e Y 1 75(8)
=" jes

g =r

Ti VS Zp’iﬂ'ri

t
g, = max | r;, E Pij

JF1

t—1
9;

JFi

Theorem 3 Suppose g = lim;_, o g°. Let

S={jeln]|g;=r;}

Then S is an optimal assortment with respect to choice model 7.




Conclusions

= Choice model selection and assortment optimization problem

= Present Markov chain based universal choice model

» Simultaneous approximation for all random utility models (under mild
assumptions)

= Polynomial time assortment optimization

= Future directions
= Additional constraints (eg. capacity) in assortment optimization
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Questions?
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