A Markov Chain Substitution Scheme for Approximation of Choice Models

Jose Blanchet Columbia University

Joint work with Guillermo Gallego and Vineet Goyal

Assortment Planning Problem

How to Estimate?

Choice Model

r₁

 $r_{2/}$

r_n

n

2

S

 $\pi_j(S) = P($ customer selects item j when offer set is S)

How to Optimize?

Assortment Problem

Find S to
$$\max \sum_{j \in S} r_j \cdot \pi_j(S)$$

Choice Model

- Ordered preference list (permutation) of items
- Customer selects the most preferable item available
- Most general choice model: distribution over all permutations
- Tradeoffs
 - Complex choice model: hard to optimize
 - Simple choice model: not rich enough

Common Choice Models

- Multinomial Logit model: MNL (Plackett-Luce, MacFadden (1974))
 - utility parameters: w_i for item *i*, attribute $w_i + X_i \& X_i$'s *i.i.d.* Gumbel.
 - choice probabilities $\pi_j(S) = rac{u_j}{\sum_{i\in S_+} u_i} (\mathsf{S}_{+} = \mathsf{S} \ \mathsf{U} \ \{0\})$

Model Selection: which is the right model?

- True choice model is latent
- We only observe choice or sales data
- Error in model selection can lead to highly suboptimal decisions

Related Work

- Smith and Agrawal (2000), Netessine and Rudi (2003): two-step dynamic substitution.
- Other dynamic substitution & data inference: Saure and Zeevi (2009), Rusmevichientong and Topaloglu (2009).
- Farias et al. (2010)
 - Estimate distribution over permutation with sparsest support consistent data
 - Can efficiently provide estimator under some conditions
- Vulcano, van Ryzin, Ratliff (2012)
 - EM algorithm to estimate a semi-parametric family of choice models

This Talk

- Markov chain based "Universal" choice "model" (really a computational tool).
- Can be estimated efficiently
 - O(n²) parameters
- Universal approximation for all random utility models
 - Exact if the underlying model is MNL
 - Good approximation bounds for general random utility model
- Efficient assortment optimization

Markov Chain Based Model

New primitive for substitution behavior

- No transitions out of state 0
- Markovian model
 - After transition to state j, customer behaves like first choice being j
- Specified by O(n²) transition probability parameters

Estimating Markov Chain Model

$$ho_{ij} = rac{\pi_j(N\setminus\{i\})-\pi_j(N)}{\pi_i(N)}$$

Fraction of customers who select j given the first choice is i

Estimating Markov Chain Model

• Suppose distribution over permutation σ given by $p(\sigma)$

 $\lambda_i = P(\sigma(1) = i)$

$$\rho_{i,j} = P\left(\sigma\left(2\right) = j | \sigma\left(1\right) = i\right)$$

Estimating Markov Chain Model

$$ho_{ij} = rac{\pi_j(N\setminus\{i\})-\pi_j(N)}{\pi_i(N)}$$

Fraction of customers who select j given the first choice is i

Data required to estimate the model

 $\pi_j(N), \ \pi_j(N\setminus\{i\}), \ orall i,j$

- Choice probability data for n offer sets
- Given S we can estimate

$$ho_{ij}=rac{\pi_j(S\setminus\{i\})-\pi_j(S)}{\pi_i(S)}, ext{ if } i,j\in S$$

Computing Choice Probability Estimates

- Define Markov chain for offer set S: M(S)
 - All states in S (including 0) are absorbing states
- Estimate of choice probability of item j in S

 $\hat{\pi}_j(S) = P(M(S))$ absorbs in state j given initial arrival probabilities λ_i)

- Can be computed efficiently for any j, S
 - No closed form expression

Approximation Bounds: MNL Model

Suppose underlying model is MNL with parameters u_i for all i

$$ho_{ij} = rac{u_j}{\sum_{\ell \in N_+} u_\ell - u_i} = \pi_j (N \setminus \{i\})$$

Theorem 1 If the underlying model is MNL with parameters u_i for all i = 0, ..., n. Then for any offer set $S \subseteq [n]$ and $j \in S$,

$$\hat{\pi}_j(S) = rac{u_j}{\sum_{i \in S_+} u_i} = \pi_j(S)$$

Approximation Bounds: Other Models

- McFadden and Train (2000)
 - Every random utility based model can be approximated arbitrarily closely by a mixture of MNL
- Suffices to prove approximation bounds for mixture models
- Consider a mixture of MNL model with K segments
 - Probability of segment k is θ_k
 - Parameters for segment k: u_0^k, \ldots, u_n^k
 - Assume wlog. $u_0^k + \ldots + u_n^k = 1$
- Choice Probability:

$$\pi_j(S) = \sum_{k=1}^K heta_k rac{u_j^k}{\sum_{i \in S_+} u_i^k}$$

Approximation Bounds: MMNL Model

MMNL model (with K segments)

$$\rho_{ij} = \sum_{k=1}^{K} P(\text{ segment } k \mid \text{first choice is } i) \cdot \frac{u_j^k}{1 - u_i^k}$$

Theorem 2 If the underlying model is mixture of MNL with K segments, probabilities θ_k of segment k, and MNL parameters $u_0^k, \ldots u_n^k$. For any offer set $S \subseteq [n]$, let $\alpha = \max_k u^k(\bar{S})$. Then for any $j \in S$,

$$\pi_j(S)(1-\alpha^2) \leq \widehat{\pi}_j(S) \leq (1+\alpha^2/(1-\alpha))$$

For α =0.5, we get a 0.75-approximation for choice probabilities

Approximation Bounds: MMNL Model

- An example (2 classes of customers completely asymmetric utilities) shows that bounds are sharp.
- Numerical experiment with random u_j's & report average over 500 randomly picked offer sets S (of sizes 30% to 60% n).

Average worst case relative error			
	in choice probabilities		
Case	n	K=log(n)	errMC(%)
1	10	3	3.1
2	20	3	2.4
3	30	4	2.5
4	40	4	2.4
5	60	5	1.9
6	80	5	1.6
7	100	5	1.6
8	150	6	1.2
9	200	6	1.1
10	500	7	0.8
11	1000	7	0.6

Approximation Bounds: MNL Model

Suppose underlying model is MNL with parameters u_i for all i

$$ho_{ij} = rac{u_j}{\sum_{\ell \in N_+} u_\ell - u_i} = \pi_j (N \setminus \{i\})$$

Theorem 1 If the underlying model is MNL with parameters u_i for all i = 0, ..., n. Then for any offer set $S \subseteq [n]$ and $j \in S$,

$$\hat{\pi}_j(S) = rac{u_j}{\sum_{i \in S_+} u_i} = \pi_j(S)$$

Approximation Bounds: Other Models

- McFadden and Train (1996)
 - Every random utility based model can be approximated arbitrarily closely by a mixture of MNL
- Suffices to prove approximation bounds for mixture models
- Consider a mixture of MNL model with K segments
 - Probability of segment k is θ_k
 - Parameters for segment k: u_0^k, \ldots, u_n^k
 - Assume wlog. $u_0^k + \ldots + u_n^k = 1$
- Choice Probability:

$$\pi_j(S) = \sum_{k=1}^K heta_k rac{u_j^k}{\sum_{i \in S_+} u_i^k}$$

Approximation Bounds: MMNL Model

MMNL model (with K segments)

$$\rho_{ij} = \sum_{k=1}^{K} P(\text{ segment } k \mid \text{first choice is } i) \cdot \frac{u_j^k}{1 - u_i^k}$$

Theorem 2 If the underlying model is mixture of MNL with K segments, probabilities θ_k of segment k, and MNL parameters $u_0^k, \ldots u_n^k$. For any offer set $S \subseteq [n]$, let $\alpha = \max_k u^k(\bar{S})$. Then for any $j \in S$,

$$\hat{\pi}_j(S) \ge \pi_j(S)(1 - \alpha^2)$$

For α =0.5, we get a 0.75-approximation for choice probabilities

Assortment Optimization

Optimization Problem

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Theorem 3 Suppose $g = \lim_{t \to \infty} g^t$. Let $S = \{ j \in [n] \mid g_j = r_j \}.$

Then S is an optimal assortment with respect to choice model $\hat{\pi}$.

Conclusions

Choice model selection and assortment optimization problem

Present Markov chain based universal choice model

- Simultaneous approximation for all random utility models (under mild assumptions)
- Polynomial time assortment optimization

Future directions

Additional constraints (eg. capacity) in assortment optimization

Questions?