A Markov Chain Substitution Scheme for Approximation of Choice Models

Jose Blanchet Columbia University

Joint work with Guillermo Gallego and Vineet Goyal

Assortment Planning Problem

How to Estimate?

Choice Model

1

 $r₁$

 $r₂$

2

S

n

 r_{n}

 $\pi_j(S) = P$ (customer selects item j when offer set is S)

How to Optimize?

Assortment Problem

Find S to
$$
\max \sum_{j \in S} r_j \cdot \pi_j(S)
$$

Choice Model

- Ordered preference list (permutation) of items
- Customer selects the most preferable item available
- Most general choice model: **distribution over all permutations**
- **Tradeoffs**
	- Complex choice model: hard to optimize
	- **Simple choice model: not rich enough**

Common Choice Models

- Multinomial Logit model: MNL (Plackett-Luce, MacFadden (1974))
	- utility parameters: w_i for item *i*, attribute w_i+X_i & X_i's *i.i.d.* Gumbel.
	- choice probabilities $\pi_j(S) = \frac{u_j}{\sum_{i \in S} u_i} (S_+ = S \cup \{0\})$

Model Selection: which is the right model?

- **True choice model is latent**
- The Mixture of Multimore of Multimore of Multimore Christian Multimore Christian Multimore Christian Multimore
Logit Model Andre Christian Multimore Christian Multimore Christian Multimore Christian Multimore Christian Mu **We only observe choice or sales data**
- ne hard to optimize (Rusmevichientong et al. (2010) **Error in model selection can lead to highly suboptimal decisions**

Related Work

- Smith and Agrawal (2000), Netessine and Rudi (2003): two-step dynamic substitution.
- Other dynamic substitution & data inference: Saure and Zeevi (2009), Rusmevichientong and Topaloglu (2009).
- \blacksquare Farias et al. (2010)
	- Estimate distribution over permutation with sparsest support consistent data
	- Can efficiently provide estimator under some conditions
- Vulcano, van Ryzin, Ratliff (2012)
	- EM algorithm to estimate a semi-parametric family of choice models

This Talk

- **Markov chain based** "Universal" choice "model" (really a computational tool).
- Can be estimated efficiently
	- \bullet O(n²) parameters
- **Universal approximation** for all random utility models
	- **Exact if the underlying model is MNL**
	- Good approximation bounds for general random utility model

Efficient assortment optimization

Markov Chain Based Model

New primitive for substitution behavior

- **No transitions out of state 0**
- **Markovian model**
	- After transition to state j, customer behaves like first choice being j
- **Specified by O(n²) transition probability parameters**

Estimating Markov Chain Model

$$
\rho_{ij} = \frac{\pi_j(N \setminus \{i\}) - \pi_j(N)}{\pi_i(N)}
$$

Fraction of customers who select j given the first choice is i

Estimating Markov Chain Model

Suppose distribution over permutation σ given by p(σ)

 $\lambda_i = P(\sigma(1) = i)$

$$
\rho_{i,j}=P\left(\sigma\left(2\right)=j|\sigma\left(1\right)=i\right)
$$

Estimating Markov Chain Model

$$
\rho_{ij} = \frac{\pi_j(N \setminus \{i\}) - \pi_j(N)}{\pi_i(N)}
$$

Fraction of customers who select j given the first choice is i

Data required to estimate the model

 $\pi_j(N), \pi_j(N \setminus \{i\}), \forall i, j$

- **Choice probability data for n offer sets**
- **Given S we can estimate**

$$
\rho_{ij}=\frac{\pi_j(S\setminus\{i\})-\pi_j(S)}{\pi_i(S)},\ \text{if}\ i,j\in S
$$

Computing Choice Probability Estimates

- **Define Markov chain for offer set S: M(S)**
	- All states in S (including 0) are absorbing states
- **Estimate of choice probability of item j in S**

 $\hat{\pi}_i(S) = P(M(S)$ absorbs in state j given initial arrival probabilities λ_i)

- **Can be computed efficiently for any j, S**
	- No closed form expression

Approximation Bounds: MNL Model

Suppose underlying model is MNL with parameters ui for all i

$$
\rho_{ij} = \frac{u_j}{\sum_{\ell \in N_+} u_\ell - u_i} = \pi_j(N \setminus \{i\})
$$

Theorem 1 If the underlying model is MNL with parameters u_i for all $i = 0, \ldots, n$. Then for any offer set $S \subseteq [n]$ and $j \in S$,

$$
\hat{\pi}_j(S) = \frac{u_j}{\sum_{i \in S_+} u_i} = \pi_j(S)
$$

Approximation Bounds: Other Models

- **McFadden and Train (2000)**
	- Every random utility based model can be approximated arbitrarily closely by a mixture of MNL
- **Suffices to prove approximation bounds for mixture models**
- **Consider a mixture of MNL model with K segments**
	- Probability of segment k is θ_k
	- Parameters for segment k: u_0^k, \ldots, u_n^k
	- Assume wlog. $u_0^k + \ldots + u_n^k = 1$
- **Choice Probability:**

$$
\pi_j(S) = \sum_{k=1}^K \theta_k \frac{u_j^k}{\sum_{i \in S_+} u_i^k}
$$

Approximation Bounds: MMNL Model

MMNL model (with K segments)

$$
\rho_{ij} = \sum_{k=1}^{K} P(\text{ segment } k \mid \text{first choice is } i) \cdot \frac{u_j^k}{1 - u_i^k}
$$

Theorem 2 If the underlying model is mixture of MNL with K segments, probabilities θ_k of segment k, and MNL parameters $u_0^k, \ldots u_n^k$. For any offer set $S \subseteq [n]$, let $\alpha = \max_k u^k(\overline{S})$. Then for any $j \in S$,

$$
\pi_j\left(S\right)\left(1-\alpha^2\right) \le \widehat{\pi}_j(S) \le \left(1+\alpha^2/(1-\alpha)\right)
$$

For α=0.5, we get a 0.75-approximation for choice probabilities

Approximation Bounds: MMNL Model

- **An example (2 classes of customers completely asymmetric utilities) shows that bounds are sharp.**
- **Numerical experiment with random u***^j* **'s & report average over 500 randomly picked offer sets S (of sizes 30% to 60% n).**

Approximation Bounds: MNL Model

Suppose underlying model is MNL with parameters ui for all i

$$
\rho_{ij} = \frac{u_j}{\sum_{\ell \in N_+} u_\ell - u_i} = \pi_j(N \setminus \{i\})
$$

Theorem 1 If the underlying model is MNL with parameters u_i for all $i = 0, \ldots, n$. Then for any offer set $S \subseteq [n]$ and $j \in S$,

$$
\hat{\pi}_j(S) = \frac{u_j}{\sum_{i \in S_+} u_i} = \pi_j(S)
$$

Approximation Bounds: Other Models

- **McFadden and Train (1996)**
	- Every random utility based model can be approximated arbitrarily closely by a mixture of MNL
- **Suffices to prove approximation bounds for mixture models**
- **Consider a mixture of MNL model with K segments**
	- Probability of segment k is θ_k
	- Parameters for segment k: u_0^k, \ldots, u_n^k
	- Assume wlog. $u_0^k + \ldots + u_n^k = 1$
- **Choice Probability:**

$$
\pi_j(S) = \sum_{k=1}^K \theta_k \frac{u_j^k}{\sum_{i \in S_+} u_i^k}
$$

Approximation Bounds: MMNL Model

MMNL model (with K segments)

$$
\rho_{ij} = \sum_{k=1}^{K} P(\text{ segment } k \mid \text{first choice is } i) \cdot \frac{u_j^k}{1 - u_i^k}
$$

Theorem 2 If the underlying model is mixture of MNL with K segments, probabilities θ_k of segment k, and MNL parameters $u_0^k, \ldots u_n^k$. For any offer set $S \subseteq [n]$, let $\alpha = \max_k u^k(\overline{S})$. Then for any $j \in S$,

$$
\hat{\pi}_j(S) \geq \pi_j(S)(1-\alpha^2)
$$

For α=0.5, we get a 0.75-approximation for choice probabilities

Assortment Optimization

 $\max_{S \subseteq [n]}~\sum_{j \in S} r_j \cdot \hat{\pi}_j(S)$

Optimization Problem

$$
\boxed{ \begin{aligned} g^0=r \\ g_i^t&=\max\left(r_i,\sum_{j\neq i}\rho_{ij}g_j^{t-1}\right)} \end{aligned}}
$$

Theorem 3 Suppose $g = \lim_{t \to \infty} g^t$. Let $S = \{j \in [n] \mid g_j = r_j\}.$

Then S is an optimal assortment with respect to choice model $\hat{\pi}$.

Conclusions

- **Choice model selection and assortment optimization problem**
- **Present Markov chain based universal choice model**
	- Simultaneous approximation for all random utility models (under mild assumptions)
	- Polynomial time assortment optimization

Future directions

Additional constraints (eg. capacity) in assortment optimization

Questions?