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2

1

2

n

S

r1

r2

rn

Choice Model

Assortment Problem

Find S to

How to Estimate?

How to Optimize?



Choice Model
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 Ordered preference list (permutation) of items

 Customer selects the most preferable item available

 Most general choice model: distribution over all permutations

 Tradeoffs

 Complex choice model: hard to optimize

 Simple choice model: not rich enough 



Common Choice Models
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 Multinomial Logit model: MNL (Plackett-Luce, MacFadden (1974))

 utility parameters: wi for item i, attribute wi+Xi & Xi’s i.i.d. Gumbel.

 choice probabilities                                  (S+ = S U {0})

 Easy to optimize (Talluri and van Ryzin (2004), Gallego et al. (2004))

 Nested Logit model (Williams (1977), McFadden (1978))

 Easy for some parameters of the model (Davis et al. (2012))

 Mixture of Multinomial Logit Model

 NP hard to optimize (Rusmevichientong et al. (2010))

 PTAS for a constant number of mixtures

Model Selection: which is the right model?

 True choice model is latent

 We only observe choice or sales data

 Error in model selection can lead to highly suboptimal decisions



Related Work
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 Smith and Agrawal (2000), Netessine and Rudi (2003): two-step 

dynamic substitution.

 Other dynamic substitution & data inference: Saure and Zeevi 

(2009), Rusmevichientong and Topaloglu (2009).

 Farias et al. (2010)

 Estimate distribution over permutation with sparsest support consistent data

 Can efficiently provide estimator under some conditions

 Vulcano, van Ryzin, Ratliff (2012)

 EM algorithm to estimate a semi-parametric family of choice models



This Talk
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 Markov chain based “Universal” choice “model” (really a 

computational tool).

 Can be estimated efficiently

 O(n2) parameters

 Universal approximation for all random utility models

 Exact if the underlying model is MNL

 Good approximation bounds for general random utility model

 Efficient assortment optimization



Markov Chain Based Model
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 New primitive for substitution behavior
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If i is not available

 No transitions out of state 0

 Markovian model

 After transition to state j, customer behaves like first choice being j

 Specified by O(n2) transition probability parameters

No purchase alternative



Estimating Markov Chain Model
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If i is not available

No purchase alternative

Fraction of customers who select j

given the first choice is i



Estimating Markov Chain Model
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 Suppose distribution over permutation σ given by p(σ)



Estimating Markov Chain Model
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Fraction of customers who select j

given the first choice is i

 Data required to estimate the model

 Choice probability data for n offer sets

 Given S we can estimate



Computing Choice Probability Estimates              
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 Define Markov chain for offer set S: M(S)
 All states in S (including 0) are absorbing states

 Estimate of choice probability of item j in S

 Can be computed efficiently for any j, S

 No closed form expression



Approximation Bounds: MNL Model
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 Suppose underlying model is MNL with parameters ui for all i



Approximation Bounds: Other Models
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 McFadden and Train (2000) 

 Every random utility based model can be approximated 

arbitrarily closely by a mixture of MNL

 Suffices to prove approximation bounds for mixture models

 Consider a mixture of MNL model with K segments
 Probability of segment k is

 Parameters for segment k:

 Assume wlog.

 Choice Probability:   



Approximation Bounds: MMNL Model

14

MMNL model (with K segments)

For α=0.5, we get a 0.75-approximation for choice probabilities



Approximation Bounds: MMNL Model
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 An example (2 classes of customers completely asymmetric utilities) 

shows that bounds are sharp. 

 Numerical experiment with random uj’s & report average over 500 

randomly picked offer sets S (of sizes 30% to 60% n).

Case n K=log(n) errMC(%)

1 10 3 3.1

2 20 3 2.4

3 30 4 2.5

4 40 4 2.4

5 60 5 1.9

6 80 5 1.6

7 100 5 1.6

8 150 6 1.2

9 200 6 1.1

10 500 7 0.8

11 1000 7 0.6

Average worst case relative error

in choice probabilities



Approximation Bounds: MNL Model
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 Suppose underlying model is MNL with parameters ui for all i



Approximation Bounds: Other Models
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 McFadden and Train (1996)

 Every random utility based model can be approximated 

arbitrarily closely by a mixture of MNL

 Suffices to prove approximation bounds for mixture models

 Consider a mixture of MNL model with K segments
 Probability of segment k is

 Parameters for segment k:

 Assume wlog.

 Choice Probability:   



Approximation Bounds: MMNL Model
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MMNL model (with K segments)

For α=0.5, we get a 0.75-approximation for choice probabilities



Assortment Optimization

 Optimization Problem
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Conclusions
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 Choice model selection and assortment optimization problem

 Present Markov chain based universal choice model

 Simultaneous approximation for all random utility models (under mild 

assumptions)

 Polynomial time assortment optimization

 Future directions

 Additional constraints (eg. capacity) in assortment optimization
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Questions?


