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E¢ cient importance sampling (IS) and large deviations:
Light tails

S. R. S. Varadhan�s Abel
prize citation on large
deviations theory: �It has
greatly expanded our
ability to use computers
to simulate and analyze
the occurrence of rare
events."
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Heavy tails: singular change of measure & "rogue" paths...

Asmussen, Binswanger and Hojgaard �00

Direct IS strategy = asymptotic conditional distribution is
singular (likelihood ratio does not exist!)
Contribution to the variance from some asymptotically
negligible paths, "rogue paths", is typically substantial
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Illustrating the role of "rogue" paths

X1,X2 i.i.d. Weibull, for β 2 (0, 1) let

P (Xi > t) = F (t) = exp
�
�tβ

�
, t > 0.

Estimate: P (X1 + X2 > b) � P (X1 > b) + P (X2 > b) as
b % ∞.
"Natural" IS strategy: Sample

(Y1,Y2) =
�
(X1, X2jX1 & X2 > b� X1) with pr 1/2
(X1jX2 & X1 > b� X2, X2) with pr 1/2

IS estimator
fX1 (y1) fX2 (y2)
fY1,Y2 (y1, y2)

=
2F (b� y1) F (b� y2) I (y1 + y2 > b)

F (b� y1) + F (b� y2)
Second momentZ
y1+y2>b

�
fX1 fX2
fY1,Y2

�2
fY1,Y2dy1dy2 =

Z
y1+y2>b

fX1 fX2
fY1,Y2

fX1 fX2dy1dy2
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Illustrating the role of "rogue" paths

Second moment Z
y1+y2>b

fX1 fX2
fY1,Y2

fX1 fX2dy1dy2

NOTE: y1 = b/2, y2 = b/2

1

P (X1 + X2 > b)
2 �

fX1 (b/2) fX2 (b/2)
fY1,Y2 (b/2, b/2)

fX1 (b/2) fX2 (b/2)

=
F (b/2)2 fX1 (b/2)2

P (X1 + X2 > b)
2 F (b/2)

�
exp

�
�3 (b/2)β + 2bβ

�
4

Conclusion: Pick β = 2/3 then 3 < 2β+1

Squared Rel. Error:
Var (IS)

P (X1 + X2 > b)
2 �! ∞ as b % ∞.
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Contributions: Big Picture

E¢ cient changes of
measure for heavy tails

Optimal complexity
properties

Lyapunov inequalities &
construction

Supporting conditional
limit theorems & sampling
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Ruin problems for random walks

X1,X2, ... i.i.d. & EXi = �µ < 0

Sn = X1 + ...+ Xn, τb = inffn � 0 : Sn > bg

Goal: Design e¢ cient (bounded rel. error) algorithm for

u (b) = P0 (τb < ∞)

and
E [H (Sn : n � τb) , τb < ∞]

Assumption: Xi�s suitably heavy tailed (Weibullian,
power-law, lognormal type tails...)
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Large deviations for heavy-tailed random walks

Theorem (Pakes-Veraberbeke)

Suppose Xi�s and the integrated tail, v (�), are subexponential then

u (b) � v (b) :=
1
µ

Z ∞

b
P (Xi > t) dt

as b % ∞.
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Simulation for heavy-tailed random walks

Theorem (B.-Glynn 07)

Suppose Xi 2 S� let W satisfy

P (W > t) = minf 1
µ

Z ∞

b
P (Xi > t) dt, 1g

and de�ne PQ (�),

PQ (Sn+1 2 dy jSn = s) =
f (y � s) v (b� y)

w (b� s) dy ,

where w (b� s) = E [v (b� s � X )]. Then,

EQ0 [2nd moment IS estimator] � cu (b)
2

and EQτb = O (b) if E jX j2+ε < ∞.
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Simulation for heavy-tailed random walks

Replacing v (b) by u (b) in PQ (...) gives zero variance

Drawbacks? Computing w (b)
What if EX 2? Termination time?
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Large deviations for heavy-tailed random walks

Theorem (Asmussen-Kluppelberg)

(Simpli�ed) If P (Xi > t) � ct�α for α > 1. Then, conditional on
τb < ∞, we have that�

Suτb

τb
,
Sτb � b
b

,
τb
b

�
=) (�µu,Z1,Z2)

on D(0, 1)� R � R as b % ∞, where Z1 and Z2 are Pareto with
index α� 1.

So, E (τb jτb < ∞) = ∞ if α 2 (1, 2) &
E (τb jτb < ∞) = O (b) if α > 2.

Are we doomed?
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Results

Bounded relative error with mixture changes of measure
(avoids computing w (�) in BG)

Can inforce EQτb = O (b) even if E jX j2 = ∞
Veri�cation technique via Lyapunov functions

Conditional central limit theorems (re�ne Asmussen &
Kluppelberg)
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Rest of the talk

Walk you through the ideas behind the contributions via a
three step procedure

Step 1: Parametric family of changes of measure

Step 2: Lyapunov function selection (�uid heuristics)

Step 3: Ver�cation (parameter selection)
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Step 1: Parametric family of changes of measure

P (Xi > t) � ct�α as t % ∞ for α > 1

Family of changes-of-measure: s is current position,
(p (s) and a 2 (0, 1))

fX js (x j s) = p (s)
fX (x) I (x > a (b� s))
P (X > a (b� s))

+ (1� p (s)) fX (x) I (x � a (b� s))
P (X � a (b� s))

� p (s)
fX (x) I (x > a (b� s))
P (X > a (b� s)) + (1� p (s)) fX (x)

Dupuis, Leder & Wang �07.
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Step 1: Parametric family (discussion)

Role of a 2 (0, 1): Capture rogue sample paths,
(X jX > x) � x + xZ , where Z � 0 is Pareto

How to choose p (s)? Use large deviations results

Given no jump by time t, St � �µt & jumping to b at t + 1
given τb < ∞

p (s) � P (X � µt > b)R ∞
0 P (X � µt > b) dt

=
µP (X > b+ µt)R ∞
b P (X > u) du

= O
�
1
b

�
.
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Step 2: Lyapunov inequalities (variance control)

Lemma (B. & Glynn �07)

Suppose that there is a positive function g (�) such that

E
�
g (s + X )
g (s)

� f (X )
f (X js)

�
� 1

and g (s) � 1 for s > b. Then,

EQs (2nd moment IS) � g (s) .
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Step 2: Guessing Lyapunov function

Want bounded relative error, so pick (for κ > 0)

g (s) = min

 
κ

�Z ∞

b�s
P (X > u) du

�2
, 1

!
.

Earlier discussion suggests (θ to be selected)

p (s) = θ
P (X > b� s)R ∞
b�s P (X > s) du
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On g (s) < 1 su¢ ces to check

E
�
g (s + X )
g (s)

� f (X )
f (X js)

�
� P (X > a (b� s))2

p (s) g (s)
+
E (g (s + X ) ;X � a (b� s))

(1� p (s)) g (s) � 1
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Recall

p (s) = θ
P (X > b� s)R ∞
b�s P (X > s) du

� θ (α� 1)
b� s ,

g (s) = κ

�Z ∞

b�s
P (X > u) du

�2
,

Thus, as b� s % ∞

P (X > a (b� s))2

p (s) g (s)
� a�αP (X > a (b� s))

θκ
R ∞
b�s P (X > u) du

� a�α (α� 1)
θκ (b� s)
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Step 3: Tunning the parameters...

Taylor approximation...ξ between 0 and X

E (g (s + X ) ;X � a (b� s))
g (s) (1� p (s))

� (1+ p (s))
�
1+

∂g (s)
g (s)

E
�

∂g (s + ξ)

∂g (s)
X ;X � a (b� s)

��

Note on X � a (b� s)����∂g (s + ξ)

∂g (s)

���� � const ����F (b� s � a (b� s))F (b� s)

���� � O (1)
uniformly over b� s > 0... apply dominated convergence &
obtain...
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E (g (s + X ) ;X � a (b� s))
g (s) (1� p (s))

� (1+ p (s))
�
1+

∂g (s)
g (s)

E
�

∂g (s + ξ)

∂g (s)
X ;X � a (b� s)

��
Note on X � a (b� s)����∂g (s + ξ)

∂g (s)

���� � const ����F (b� s � a (b� s))F (b� s)

���� � O (1)
uniformly over b� s > 0... apply dominated convergence &
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Step 3: Tunning the parameters...

Given ε > 0, if b� s is large (depending on ε)
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b� s � 1
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g (s) � 1
µ2
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P (X > t) dt
�2
� u (b� s)2
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Summary (out of these calculations)

2 mixtures: Reg. varying �Need two mixtures & introduce
a 2 (0, 1) for rogue paths

Role of a 2 (0, 1) DCT: Analysis shows a 2 (0, 1) for the
Dom. Conv. Thm.����∂g (s + ξ)

∂g (s)

���� � const ����F (b� s � a (b� s))F (b� s)

���� � O (1)
Zero variance selection: Can pick θ � µ, κ � 1/µ2

which yields for b large enough

(Jensen) u (b)2 � EQ [2nd moment] � (1+ ε)u (b)2 (Lyapunov)

Parameter constraint: Selection came from

1
θκ
+ θ � 2µ � 0
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Total variation approximation to conditional distribution

Zero variance selection: Can pick θ � µ, κ � 1/µ2

which yields for b large enough

(Jensen) u (b)2 � EQ [2nd moment] � (1+ ε)u (b)2 (Lyapunov)

Lemma
If eE  � dP

d eP � I (τb < ∞)
�2 1
P (τb < ∞)

!
� 1+ ε

Then,

sup
A

���P ((S1, ...,Sτb ) 2 Ajτb < ∞)� eP ((S1, ...,Sτb ) 2 A)
��� < ε1/2.

Conclusion: eP (�) approximates conditional distribution given
τb < ∞
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Conditional functional central limit theorems

Easy to see that τb � time to get one large jump under eP (�)
&...
Using

fX js (x j s) = p (s)
fX (x) I (x > a (b� s))
P (X > a (b� s)) + (1� p (s)) fX (x)

recover & re�ne Asmussen-Kluppelberg...

Theorem (B. & Liu)

[Simpli�ed] If P (Xi > t) � ct�α for α > 2 and
Var (Xi ) = σ2 < ∞,�

Suτb + µτbp
τb

,
Sτb � b
b

,
τb
b

�
=) (σB (u) ,Z1,Z2)

on D(0, 1)� R � R as b % ∞, where Z1 and Z2 are Pareto with
index α� 1.
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Parameter selection for termination time

Parameter constraint: Selection came from

1
θκ
+ θ � 2µ � 0

Select θ . 2µ and κ large enough... still get bounded relative
error BUT faster termination time (inducing more jumps!).

How fast can it be?
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Termination time

Intuition: τb � time to get one large jump

eP0 (τb > tb) �
tb

∏
j=0
(1� p (�jµ)) � exp

 
�

tb

∑
j=0

θ (α� 1)
b+ µj

!

� exp
�
�
Z tb

0

θ (α� 1)
b+ µs

ds
�
=

�
1

1+ µt

�θ(α�1)/µ

.

So, under eP (�), τb/b is pareto with index θ(α� 1)/µ

θ . 2µ, then eE (τb) = O (b) if 2 (α� 1) > 1 OR α > 3/2
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Summary of results on bounded relative error and
termination time

Theorem (B. & Liu)

if Xi�s are regularly varying (power law tails) can select mixture
parameters using Lyapunov inequalities to guarantee: A) Total
variation approximation (asymptotically zero relative error), B)
Bounded relative error and O (b) termination time if α > 3/2.
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More on e¢ ciency and termination time

What about α 2 (1, 3/2)?

Basically impossible to do bounded relative error IS such thateE (τb) = O (b)
ANY reasonable IS should make

eP (τb/b > t) � ct�γ+1

Bounded relative error says

∞ >
Z ∞

0

1

P (τb < ∞)2

 
P (τb/b 2 dt)eP (τb/b 2 dt)

!2 eP (τb/b 2 dt)

=
Z ∞

0

 
P (τb/b 2 dtjτb < ∞)eP (τb/b 2 dt)

!2 eP (τb/b 2 dt) .
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More on e¢ ciency and termination time

Asmussen & Kluppelberg�s result suggests

P (τb/b 2 dtjτb < ∞) � (α� 1)µ(1+ µt)�αdt

So, must haveZ ∞

1

�
t�α

t�γ

�2
t�γdt =

Z ∞

1
t�2α+γdt < ∞

or 2α > γ+ 1.

At the same time, eEτb = O (b) demandsZ ∞

1
ct�γ+1dt < ∞

or γ > 2.

So α > 3/2...
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Summary of results of termination time beyond critical case

Theorem (B. & Liu)

if Xi�s are regularly varying (power law tails) α 2 (1, 3/2) can
select mixture parameters using Lyapunov inequalities to guarantee
for 0 < ρ < (α� 1)/(2� α)

eE [(1+ ρ)-moment of IS Est] � cu (b)1+ρ

and O (b) termination time.

Bound ρ < (α� 1)/(2� α) optimal, similar argument as
before...
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Keep in mind the Big Picture

E¢ cient changes of
measure for heavy tails

Optimal complexity
properties (bounded rel.
error & optimal
termination time)
Methodology based on
Lyapunov inequalities

Supporting conditional
limit theorems & sampling
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Pareto vs Weibullian tails
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How to control "rogue" paths

2 mixtures: Reg. varying �Need two mixtures & introduce
a 2 (0, 1) for rogue paths

Role of a 2 (0, 1) DCT: Analysis shows a 2 (0, 1) for the
Dom. Conv. Thm.����∂g (s + ξ)

∂g (s)

���� � const ����F (b� s � a (b� s))F (b� s)

���� � O (1)
Weibull case clearly 2 mixtures are not enough...

How to deal with di¤erent scales issue?

Can one even do �nitely many mixtures?
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A2 = lighter than any Pareto

A3 eventually concave hazard function Λ (�)
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The mixture family: Construction

k + 2 - mixtures (k = 0 if Reg. Var. & k % ∞ if β % 1)

(�∞, c0] � > regular increment
(c0, c1] � > transition component

(cj�1, cj ], j = 2, ..., k � 1 � > interpolating components

(ck�1, ck ] � > transition component

(ck ,∞) � > large jump component
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Mixture family: Regular component

Regular component: 3 STEP procedure...

c0 = b� s �Λ�1 (Λ (b� s)� a�) for a� > 0
X jX � c0: Taylor expansion, DCT argument����F (b� s � c0)F (b� s)

����
=

�����F
�
Λ�1 (Λ (b� s)� a�)

�
F (b� s)

����� = exp (a�)
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Regular component: 3 STEP procedure...

c0 = b� s �Λ�1 (Λ (b� s)� a�) for a� > 0
X jX � c0: Taylor expansion, DCT argument����F (b� s � c0)F (b� s)
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=
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�
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Mixture family: Large jump component

ck = Λ�1 (Λ (b� s)� a��) for a�� > 0

X jX > ck : Capturing rogue paths

P (X > b� s jX > ck ) =
F (b� s)

F (Λ�1(Λ(b� s)� a��))
= exp (�a��)
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The mixture family: Interpolating components

Designed to be negligible when doing 3 STEP veri�cation
procedure
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The mixture family: interpolating components

Pick ε1, ε2 > 0 & aj+1 = aj + ε1/2 with

aβ
j + (1� aj+1)β � 1+ ε2.

and ak�1 � 1� ε1, a1 � ε1

Existence since x 2 (0, 1) implies

x β + (1� x)β > 1

c1 = a1 (b� s) , ..., ck�1 = ak�1 (b� s)
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The mixture family: transition components

Required since c0 = o (b� s)

X jX 2 (c0, c1] � > transition component

b� s � X jb� s � X 2 (ck�1, ck ] � > transition component
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Summary of results on bounded relative error and
termination time

Theorem (B. & Liu)

if Xi�s A1-A3 apply then can select mixture parameters using
Lyapunov inequalities to guarantee: A) Total variation
approximation (asymptotically zero relative error), B) Bounded
relative error and O

�
b1�β

�
termination time. If in addition Xi is in

MDA of Gumble law then�
Suτb + µτbp

τb
,Λ0 (b)� (Sτb � b) ,Λ0 (b)� τb

�
=) (σB (u) ,Z1,Z2)

on D(0, 1)� R � R as b % ∞, where Z1 and Z2 are independent
exponentials.
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Keep in mind the Big Picture!

E¢ cient changes of
measure for heavy tails

Optimal complexity
properties (bounded rel.
error & optimal
termination time)
Methodology based on
Lyapunov inequalities and
�uid heuristics

Supporting conditional
limit theorems & sampling
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