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Introduction
°

Efficient importance sampling (IS) and large deviations:

Light tails

@ S. R. S. Varadhan's Abel
prize citation on large
deviations theory: “It has
greatly expanded our
ability to use computers
to simulate and analyze
the occurrence of rare
events."

Large Deviations

Enhanced Exponential

- change of
estimates,
. measure,
refinements . .-
intuition

A 4

Efficient Monte Carlo
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Heavy tails: singular change of measure & "rogue" paths...

@ Asmussen, Binswanger and Hojgaard ‘00

@ Direct IS strategy = asymptotic conditional distribution is
singular (likelihood ratio does not exist!)

@ Contribution to the variance from some asymptotically
negligible paths, "rogue paths", is typically substantial
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o X1, X, i.i.d. Weibull, for B € (0,1) let
P(X; >t)=F(t) =exp (—tﬁ) , t>0.

e Estimate: P (X; + X, > b) ~ P(Xy > b) + P (Xo > b) as
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lllustrating the role of "rogue" paths

o X1, X, i.i.d. Weibull, for B € (0,1) let
P(X; >t)=F(t) =exp (—tﬁ) , t>0.

e Estimate: P (X; + X, > b) ~ P(Xy > b) + P (Xo > b) as
b / oo.
@ "Natural” IS strategy: Sample
(Y Y)— (Xl, Xg‘Xl&X2>b—X1) with pr 1/2
D2 (X Xe & Xy > b— Xo, Xp)  with pr1/2
o IS estimator
fo (1) f, (v2) _ 2F (b—y1) F(b—y2) I (y1 +y2 > b)

le,Yz (}/1,}/2) f(b_YI)‘i’f(b_)Q)
@ Second moment
f fx, i, f
/ ( X X2> fy.,v,dyrdy> = / XX fx, fx, dy1dy>
ynty:>b \ vy, v, n+y2>b fyi v,
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@ Second moment

fx, fx
/ L2 fx, fx, dy1 dys
nty2>b fyviv,

@ NOTE: y4 = b/2, yo = b/2
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lllustrating the role of "rogue" paths

@ Second moment

fx, fx
/ L2 fx, fx, dy1 dys
nty2>b fyviv,

@ NOTE: y4 = b/2, yo = b/2
1 . fx, (b/2) fx, (b/2)
P (Xl + X5 > b)2 fy..v, (b/2, b/2)
F(b/2)* f, (b/2)° &P (—3(b/2)ﬁ+2b“)
P(Xi+ X > b’ F(b/2) 4

fx, (b/2) fx, (b/2)

e Conclusion: Pick B = 2/3 then 3 < 2f*!

Var (1S)
P (Xl + X5 > b)2

Squared Rel. Error: ——o00as b / oo.
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Contributions: Big Picture

o Efficient changes of
measure for heavy tails

@ Optimal complexity
properties

@ Lyapunov inequalities &
construction

@ Supporting conditional
limit theorems & sampling

Large Deviations with Heavy

Tails
Rigorous Mixture
verification, change of
enhanced measure,
estimates, Fluid
refinements heuristics...
y

Efficient Monte Carlo
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Ruin problems for random walks

o X1, Xo, ... iid. & EX; = —ji < 0
oS, =X+ ...+ X,, Tb:inf{n20:5n>b}

e Goal: Design efficient (bounded rel. error) algorithm for
u(b) =P (Tb < 00)

and
EH(S:n<1Tp),Tp < o0

e Assumption: X;'s suitably heavy tailed (Weibullian,
power-law, lognormal type tails...)
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Large deviations for heavy-tailed random walks

Theorem (Pakes-Veraberbeke)

Suppose Xi's and the integrated tail, v (-), are subexponential then

1 o
u(b) ~ v (b) ::V/b P(X; > t)dt

as b / oo.
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Simulation for heavy-tailed random walks

Theorem (B.-Glynn 07)
Suppose X; € 8* let W satisfy

P(W > t):min{;/:op(x,-> t) dt,1}

and define PQ (-),

fly—s)v(b—y)

PQ(5n+1€d)/|5n:S): W(b—S)

dy,

where w (b—s) = E[v (b —s— X)]. Then,

EL[2nd moment IS estimator] < cu (b)?

and EQT, = O (b) if E|X|*™ < 0.
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Simulation for heavy-tailed random walks

o Replacing v (b) by u(b) in P? (...) gives zero variance
e Drawbacks? Computing w (b)
o What if EX?? Termination time?



Contributions and Setup
000e00

Large deviations for heavy-tailed random walks

Theorem (Asmussen-Kluppelberg)
(Simplified) If P (X; > t) ~ ct=* for « > 1. Then, conditional on
Tp < 00, we have that

<5Mb S, —b Ty

o , b , b) — (—yu,Zl,Zg)

on D(0,1) x Rx R as b /" oo, where Zy and Z, are Pareto with
index o — 1.

@ So, E(Tp|Tp <o0) =c0oifa €(1,2) &
E (tp|Tp < 0) = O (b) if a > 2.
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Large deviations for heavy-tailed random walks

Theorem (Asmussen-Kluppelberg)
(Simplified) If P (X; > t) ~ ct=* for « > 1. Then, conditional on
Tp < 00, we have that

<5Mb S, —b Ty

o , b , b) — (—yu,Zl,Zg)

on D(0,1) x Rx R as b /" oo, where Zy and Z, are Pareto with
index o — 1.

@ So, E(Tp|Tp <o0) =c0oifa €(1,2) &
E (tp|Tp < 0) = O (b) if a > 2.
o Are we doomed?
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Results

@ Bounded relative error with mixture changes of measure
(avoids computing w () in BG)

o Can inforce EQT, = O (b) even if E |X|* = o

@ Verification technique via Lyapunov functions

e Conditional central limit theorems (refine Asmussen &
Kluppelberg)



Contributions and Setup
oooooe

Rest of the talk

@ Walk you through the ideas behind the contributions via a
three step procedure



Contributions and Setup
oooooe

Rest of the talk

@ Walk you through the ideas behind the contributions via a
three step procedure

@ Step 1: Parametric family of changes of measure



Contributions and Setup
oooooe

Rest of the talk

@ Walk you through the ideas behind the contributions via a
three step procedure

@ Step 1: Parametric family of changes of measure

@ Step 2: Lyapunov function selection (fluid heuristics)



Contributions and Setup
oooooe

Rest of the talk

@ Walk you through the ideas behind the contributions via a
three step procedure

@ Step 1: Parametric family of changes of measure
@ Step 2: Lyapunov function selection (fluid heuristics)

@ Step 3: Verfication (parameter selection)
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Step 1: Parametric family of changes of measure

o P(X;j>t)~ct™ ast /oofora>1

o Family of changes-of-measure: s is current position,
(p(s)and a € (0,1))

fx (x)1(x>a(b—y5s))
P(X >a(b—ys))
H-p(e) B L= s o)

p(s) x ,(DX()): (;( j(z(_bs_))s)) +(1—p(s)) fx (x)

fxis (xIs) = p(s)

@ Dupuis, Leder & Wang '07.
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Step 1: Parametric family (discussion)

@ Role of a € (0,1): Capture rogue sample paths,
(X|X > x) &~ x4+ xZ, where Z > 0 is Pareto

@ How to choose p(s)? Use large deviations results
@ Given no jump by time t, 5; = —put & jumping to b at t +1
given Tp < 00

. P(X—ut>0b) yP(X>b+yt)_O<1)
T [PP(X—put>bydt  [TP(X>u)du '

p(s)



Regularly Varying Case
©00000000

Step 2: Lyapunov inequalities (variance control)

Lemma (B. & Glynn '07)
Suppose that there is a positive function g (-) such that

g(s+X) _ F(X)
E< () Xf<xrs>>§1

and g (s) > 1 fors > b. Then,

EL (2nd moment 1S) < g (s) .
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Step 2: Guessing Lyapunov function

e Want bounded relative error, so pick (for x > 0)

£ (s) = min <K </:SP(X> u)du>2,1>.

e Earlier discussion suggests (0 to be selected)

 P(X>b-5)
p(s)_gf,jisp(x>s)du



e On g (s) < 1 suffices to check

E(g(s+X) f(X))

g(s) " FX]s)
P(X>a(b—s)® E(g(s+X);X<a(b—s))
p(s)e(s) (I—=p(s)g(s)

<1
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@ Recall

P(X>b—s) _0(a—1)

= 0— ~
p(s) fo  P(X>s)du b—s

g(s) — K</b°° P(x>u)du>2,

—Ss



Regularly Varying Case
000®00000

@ Recall
P(X>b—s 0(ax—1
[ P (X >s)du b—s

g(s) = K</b°° P(X>u)du>2,

@ Thus,as b—s /o

P(X>a(b—s))® a*P(X>a(b—s)) a*(a—1)
p(s)gls) o[ P(X>u)du  6x(b—s)
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Step 3: Tunning the parameters...

@ Taylor approximation...¢ between 0 and X
E(g(s+X);X<a(b—s))
g(s)(1=p(s))
~ (14 p(s)) <1 RO (agaf;(*)@x,x <a(b— s)>)

g (s
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Step 3: Tunning the parameters...

@ Taylor approximation...¢ between 0 and X

E(g(s+X);X<a(b—s))

g(s)(L=p(s))
< epe) (1 e (B XX < a0-9))
@ Noteon X < a(b—ys)
g (s+¢) F(b—s—a(b—ys))
‘ag(s)‘gconst Flo—s) ’_O(l)

uniformly over b —s > 0... apply dominated convergence &
obtain...
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Step 3: Tunning the parameters...

e Given € > 0, if b— s is large (depending on &)

g(s+X) f(X)
E( ) f<X|s>>

ooy () (et

(1+p(s)) (1+0g(s) /g (5))
a*(a—1) (o —1) ) (oc—l)(l—s)gl

~ 2 W7 140 -
x(b—s) s T
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Step 3: Tunning the parameters...

e Given € > 0, if b— s is large (depending on &)

g(s+X)_ F(X)
E( () ><f<><|s>>

e, (o) (o)

<

~ Ok (b—>5s) ~- 4
(1+p(s) (1+9g(s)/g(s))

_oaf(a—1) (a—1) (a—1)(1—¢)

N x(b—s) 1T T o, St

o lfaSl e>0then 0~ pu, k~1/u% And

g(s)%;z(/b_sP(X> t)dt>2~u(b—s)2



Regularly Varying Case
000000@00

Summary (out of these calculations)

@ 2 MIXTURES: Reg. varying — Need two mixtures & introduce
a € (0,1) for rogue paths



Regularly Varying Case
000000@00

Summary (out of these calculations)

@ 2 MIXTURES: Reg. varying — Need two mixtures & introduce
a € (0,1) for rogue paths

@ ROLE OF a € (0,1) DCT: Analysis shows a € (0,1) for the
Dom. Conv. Thm.
‘ag (s+90)
9g (s)

F(b—s—a(b—ys))
F(b—s)

<0(1)

‘ < const
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}ag (s+¢)
og (s)
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< const — =
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Summary (out of these calculations)

@ 2 MIXTURES: Reg. varying — Need two mixtures & introduce
a € (0,1) for rogue paths

@ ROLE OF a € (0,1) DCT: Analysis shows a € (0,1) for the
Dom. Conv. Thm.

}ag (s+¢)
og (s)

e ZERO VARIANCE SELECTION: Can pick 0 ~ p, k &~ 1/ p?
which yields for b large enough

F(b—s—a(b—ys))
F(b—ys) <o)

‘ < const

(Jensen) u (b)*> < EQ[2nd moment] < (14¢)u (b)*> (Lyapunov)

@ PARAMETER CONSTRAINT: Selection came from

1
—+0—-2u<
9K+ u<o
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Total variation approximation to conditional distribution
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o ZERO VARIANCE SELECTION: Can pick 0 ~ p, k &~ 1/p?
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Lemma

If )
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Then,
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Total variation approximation to conditional distribution

o ZERO VARIANCE SELECTION: Can pick 0 ~ p, k &~ 1/p?
which yields for b large enough

(Jensen) u (b)? < E?[2nd moment] < (1+¢)u(b)* (Lyapunov)

Lemma

If )
~ dP 1
E — x|/ < —— | <1
<<dP e °°)> P(rb<°°>>‘ I

sup |P((51, . Se,) € AlTp < ) — P ((S1,...,Sr,) € A)‘ < el/2,

Then,

v

e Conclusion: P (-) approximates conditional distribution given
Tp < ©
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Conditional functional central limit theorems

o Easy to see that T, ~ time to get one large jump under P (-)

&...

e Using

fx (x) 1 (x>a(b—ys))
P(X>a(b—ys))

recover & refine Asmussen-Kluppelberg...

fx|s (x| s) = p(s) + (1 =p(s)) fx (x)

Theorem (B. & Liu)

[Simplified] If P (X; > t) ~ ct=* for a > 2 and
Var (X;) = 02 < o0,

Sur, T UTH S, — b Tp

A/ Th ' b " b

on D(0,1) x RX R as b /" oo, where Z; and Z, are Pareto with
index o« — 1.

> —— (UB(U),Z]_,ZQ)
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Parameter selection for termination time

@ PARAMETER CONSTRAINT: Selection came from

1
— —2u <
6K+9 u<o

@ Select 6 < 2u and « large enough... still get bounded relative
error BUT faster termination time (inducing more jumps!).

@ How fast can it be?
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@ Intuition: T, ~ time to get one large jump
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Termination time

@ Intuition: T, ~ time to get one large jump

_ tb ) tb 9(06—1)
Py (tp > th) = g(l—p(—jy))%exp _;W

th g (x—1) 1 0(a=1)/p
el ) S ()

e So, under P (-), T,/ b is pareto with index 6(a — 1)/

o 0 <2y, then E (1) = O(b) if 2(a —1) >1 OR & > 3/2
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Summary of results on bounded relative error and
termination time

Theorem (B. & Liu)

if Xi's are regularly varying (power law tails) can select mixture
parameters using Lyapunov inequalities to guarantee: A) Total
variation approximation (asymptotically zero relative error), B)
Bounded relative error and O (b) termination time if & > 3/2.
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More on efficiency and termination time

e What about & € (1,3/2)?

@ Basically impossible to do bounded relative error IS such that

E(15) = O(b)
@ ANY reasonable IS should make
P(tp/b>t) ~ ct™7H1
@ Bounded relative error says

2
i 1 P(Tb/bedt) ~
= P bed
~ /0 P (T < c0)? <P(Tb/b€dt)> (Ts/b € dt)

2
T Plrs/bedtty <)) 51, /pe an)
0 ﬁ(’l’b/be dt) |
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@ Asmussen & Kluppelberg's result suggests
P(tp/b € dt|Tp < 00) ~ (0 — 1)u(1l+ ut) “dt

@ So, must have

(o) t—tx 2 (o)
/ tVdt = / £ dt < o0
1 = 1

or 2a > v+ 1.
o At the same time, ET, = O (b) demands

o0
/ ct "t < o0
1

or v > 2.

@ Son>3/2..
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Summary of results of termination time beyond critical case

Theorem (B. & Liu)

if Xi's are regularly varying (power law tails) « € (1,3/2) can
select mixture parameters using Lyapunov inequalities to guarantee
for0<p<(e—1)/(2—a)

E[(1+ p)-moment of IS Est] < cu (b)'*?

and O (b) termination time.

@ Bound p < (# —1)/(2 — ) optimal, similar argument as
before...
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Keep in mind the Big Picture

o Efficient changes of

measure for heavy tails Large Deviations with Heavy
e Optimal complexity ‘Talls
properties (bounded rel. Rigorous Mixture
error & optimal Verification, change of
termination time) enhanced measure,
estimates, Fluid
@ Methodology based on refinements heuristics...

Lyapunov inequalities
Efficient Monte Carlo

@ Supporting conditional
limit theorems & sampling
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Semiexponential Case
.

How to control "rogue" paths

2 MIXTURES: Reg. varying — Need two mixtures & introduce
a € (0,1) for rogue paths

ROLE OF a € (0,1) DCT: Analysis shows a € (0, 1) for the
Dom. Conv. Thm.

}ag (s+¢)
g (s)

F(b—s—a(b—ys)) <o)

< const — =
\ or

Weibull case clearly 2 mixtures are not enough...

How to deal with different scales issue?

Can one even do finitely many mixtures?
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The mixture family: Assumptions

e Al = NOT lighter than Weibull(B), B € (0,1)
@ A2 = lighter than any Pareto

@ A3 eventually concave hazard function A (+)
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The mixture family: Construction

P10 1 |l
O Cl CZ .ee “ee eee Ck-l b-s

Co Cx
@ k+2 - mixtures (k =0 if Reg. Var. & k /o0 if B /1)

(—o0, cg] —> regular increment

., cl] —> transition component
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Mixture family: Regular component

@ Regular component: 3 STEP procedure...
e cg=b—s—A1(A(b—s)—a.) fora, >0
@ X|X < ¢p: Taylor expansion, DCT argument

‘F(b—s—co)
F(b—ys)

F(AP(A(b—s)—a.))
F(b—>s)

| = exp (a«)
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Semiexponential Case
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Mixture family: Large jump component

e ¢ =A"1 (A(b—s) — aw) for aw >0
@ X|X > ¢,: Capturing rogue paths
F(b—>s)

P(X>b—s|X>c)= FAT(Ab—s)—a) = exp (—ax)

—
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The mixture family: Interpolating components

| | | I |
O Cl CZ . vee vee Ck-l b-S
Co Cy

@ Designed to be negligible when doing 3 STEP verification
procedure
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The mixture family: interpolating components

@ Pick e;,e0 >0 & aj41 = aj +&1/2 with

ajl-s + (1 — aj+1)ﬁ > 146,

and a1 >1—¢1, a1 < ¢
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The mixture family: interpolating components

@ Pick e, >0 & ajy1 = aj—|-€1/2 with

aer (1—aj41)f >1+e.

and a1 > 1—¢1, a1 <¢g
e Existence since x € (0, 1) implies

P+ (1-x)F>1

eci=a(b—s),..cko1=ax-1(b—s5s)
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The mixture family: transition components

@ Required since ¢g = o (b —s)

e X|X € (cy, c1] —> transition component

@ b—s—X|b—s— X € (ck_1, ck] —> transition component
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Summary of results on bounded relative error and
termination time

Theorem (B. & Liu)

if Xi's AI-A3 apply then can select mixture parameters using
Lyapunov inequalities to guarantee: A) Total variation
approximation (asymptotically zero relative error), B) Bounded
relative error and O (b'~F) termination time. If in addition X; is in
MDA of Gumble law then

Sut, + UT / /
<\/?bb,/\ (b) x (Sg, — b), A (b) x rb>

= (0B(v).2Z1,2)

on D(0,1) x RX R as b /" oo, where Z; and Z, are independent
exponentials.
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