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Stylized Example

State-space of a two dimensional random walk
An = fs : vT2 s � 1g and Bn = fs : vT1 s � 1g

S1(k)

S2(k)

μ

v2

v1

ES(k) = μk

E¢ ciently estimate as n% ∞

un (0) = P0[Sk/n hits A OR B Eventually]
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Stylized Example

Sbntc = Y1 + ...+ Ybntc, Yk�s are i.i.d. with density f (�)

Wn (t) = Sbntc/n+ x

Z (1)k = vT1 Yk and Z
(2)
k = vT2 Yk

Note EZ (1)k = vT1 µ < 0 and EZ (2)k = vT2 µ < 0

Assume there are θ�1, θ
�
2 > 0 such that

E exp(θ�1Z
(1)
k ) = 1 & E exp(θ�2Z

(2)
k ) = 1

E [exp(θ�1Z
(1)
k )Z (1)k ] < ∞ & E [exp(θ�2Z

(2)
k )Z (2)k ] < ∞
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Large Deviations for the Stylized Example

Then

un (x) = Px [Wn (t) hits A OR B ]
� c1 exp(�nθ�1(1� vT1 x)) + c2 exp(�nθ�2(1� vT2 x))
= exp(�nh (x) + o (n))

as n% ∞, where

h (x) = min[θ�1(1� vT1 x), θ�2(1� vT2 x)].
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Isaacs Equation for I.S. (Dupuis - Wang)

Let ψ (λ) = log E exp
�

λTYk
�

Put I (x) = maxλ[λ
T x � ψ (λ)]

fλ (y) = exp
�

λT y � ψ (λ)
�
f (y) <� Controls

HJB eqn. to minimize 2nd moment...

Cn (w) = min
λ
E [e�λTY+ψ(λ)Cn (w + Y /n)]

Cn (w) � exp (�ng (w))

0 � min
λ
log E [e�λTX+ψ(λ)�n[g (w+Y /n)�g (w )]]

� min
λ
max

β
[�βT (λ+ ∂g (w)) + ψ (λ)� J (β)]

Subject to g (w) = 0 on A[ B.
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Isaacs Equation & Harmonic Functions

un (x) = 1 on A[ B and

un (x) = Px (TA[B < ∞) = E [un (x + Y1/n)]

Zero-variance sampler is:

P� (Yk+1 2 dy j Sk = nx) = f (y)
un (x + y/n)
un (x)
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Isaacs Equation & Harmonic Functions

Zero-variance sampler

P� (Yk+1 2 dy j Sk = nx) = f (y)
un (x + y/n)
un (x)

Approximate sampler un (x) � exp (�nh (x))

eP (Yk+1 2 dy j Sk = nx)
� f (y) exp (�n[h (x + y/n)� h (x)])
� f (y) exp (�∂h (x) � y)

But

1 =
Z eP (Yk+1 2 dy j Sk = nx) =) ψ (�∂h (x)) = 0

Equivalent to Isaacs equation with g (x) = 2h (x).
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The Second Moment of a State-dependent Estimator

Consider any sampler

PQ (Yk+1 2 dy j Sk = nx) = r�1 (x , x + y/n) f (y)

Likelihood ratio

r (Wn(0),Wn (1/n)) ...r(Wn(TA[B � 1),Wn(TA[B ))

Second moment of estimator

s(x) = Ex [r(x , x + Y /n)s(x + Y /n)]

subject to s(x) = 1 for x 2 A[ B.
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The Lyapunov Inequality

Lemma
B. & Glynn �07: Lyapunov inequality

v(x) � Ex [r(x , x + Y /n)v(x + Y /n)]

subject to v(x) � 1 for x 2 A[ B. Then, v (x) � s (x).

How to use the result? 1) Identify a change-of-measure, 2) use
heuristic / approx. to force v(x) � un (x)2.
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The Lyapunov Inequalities and Subsolutions

Lyapunov function v (x) = exp(�ng (x)) & λ = �∂g (x) /2

1 � E [exp(�λTY + ψ (λ)) exp(�n[g (x + Y /n)� g(x)])]

subject to g(x) � 0 for x 2 A[ B. Then, v (x) � s (x).

Expanding as n% ∞ we get

1+O (1/n) � exp[2ψ(�∂g (x) /2)]

Yields subsolution to the Isaacs equation (again smoothness)

ψ (�∂g (x) /2) � 0 s.t. g (x) � 0, x 2 A[ B
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The Molli�cation

Back to random walk example

h (x) = min[θ�1(1� vT1 x), θ�2(1� vT2 x)]
= �max[θ�1(vT1 x � 1), θ�2(vT2 x � 1)]

NOT smooth...

Molli�cation:

hε (x)

= �ε log[exp(θ�1(v
T
1 x � 1)/ε) + exp(θ�2(v

T
2 x � 1)/ε)]

Implementation via mixtures:

�∂hε (x) = θ�1v
T
1

w ε
1 (x)

w ε
1 (x) + w

ε
2 (x)

+ θ�2v
T
2

w ε
2 (x)

w ε
1 (x) + w

ε
2 (x)

,

w ε
1 (x) = exp(θ�1(v

T
1 x � 1)/ε),

w ε
2 (x) = exp(θ�2(v

T
2 x � 1)/ε).
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The Molli�cation

Theorem (Dupuis & Wang �07)

Let gεn (x) = 2hεn (x) and assume that nεn �! ∞ apply corresponding
sampler. Then,

2nd Moment of Est. = exp(�2nh (x) + o (n)).
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A Lyapunov Inequality

Select εn = 1/n

w1 (x) = exp(nθ�1(v
T
1 x � 1))

w2 (x) = exp(nθ�2(v
T
2 x � 1))

Mixture sampler from density ef (y)
ef (y)
f (y)

=
w1 (x)

w1 (x) + w2 (x)
exp

�
θ�1v

T
1 y
�
+

w2 (x)
w1 (x) + w2 (x)

exp
�

θ�2v
T
2 y
�

Lyapunov function

v (x) = (w1 (x) + w2(x))2 � 1

for vT1 x � 1 OR vT2 x � 1... BOUNDARY CONDITION OK!
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A Lyapunov Inequality

v (x) = [w1 (x) + w2 (x)]2

w1 (x + Y /n) = w1 (x) eθ�vT1 Y

w2 (x + Y /n) = w2 (x) eθ�vT2 Y

E
v(x + Y /n)

v (x)
1

w1(x )
w1(x )+w2(x )

eθ�1v
T
1 Y + w2(x )

w1(x )+w2(x )
eθ�2v

T
2 Y

= E
w1 (x) exp

�
θ�1v

T
1 Y

�
+ w2 (x) exp

�
θ�2v

T
2 Y

�
w1 (x) + w2 (x)

= 1.
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�
θ�1v

T
1 Y

�
+ w2 (x) exp

�
θ�2v

T
2 Y

�
w1 (x) + w2 (x)

= 1.
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Moral...

One can take ε = 1/n as molli�cation parameter

ε = 1/n is the optimal choice (bounded coef. of variation)

2nd Moment � (v1(0) + v2(0))2 � cun (0)2
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Markovian Tandem Networks

Consider a stable tandem network with d stations.

β = # of bottlenecks (i.e. stations with maximum load)

Theorem (B., Glynn and Leder �09)
There is selection of molli�cation parameters that guarantees the
coe¢ cient of variation of the Dupuis-Sezer-Wang �07 sampler to be
O
�
n2(d�β+1)

�
.

Remark: This guarantees better performance than solving the associated
linear system of equations.
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Conclusions

Subsolutions can be understood from the standpoint of Lyapunov
inequalities.

Lyapunov inequalities help understand the nature of molli�cation
parameters.

Lyapunov inequalities guided by subsolutions can strengthen the
performance analysis.

Better complexity of importance sampling vs. linear system for
tandem rigorously validated.
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