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@ A Stylized Example
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Stylized Example

@ State-space of a two dimensional random walk
0o Ay={s:v/s>1}and B, = {s: v/ s> 1}

Sa(k)

Vi

Si(k)
u
ES(K)2 uk

o Efficiently estimate as n " oo

up (0) = Py[Sk/n hits A OR B Eventually]
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Stylized Example

© Sipe =Y+ ..+ Y], Yi'sareiid. with density f(-)
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Stylized Example

° SLntJ = Y1+ ...+ Y, Yi'sareiid. with density ()
o W, (t) =S /n+x
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Stylized Example

° SLntJ = Y1+ ...+ Y, Yi'sareiid. with density ()
o W, (t) =S /n+x

o ZW = v Yiand 2 = v,
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Stylized Example

Sine] = Y1+ ..+ Y]pe, Yi'sareiid. with density f ()
W, (t) = S|ne)/n+x

ZM =Ty, and 2P = ] v,

Note EZ\") = vJ u < 0and EZ\”) = v i <0
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Stylized Example

Sine] = Y1+ ..+ Y]pe, Yi'sareiid. with density f ()
W, (t) = S|ne)/n+x

ZM =Ty, and 2P = ] v,

Note EZ\") = vJ u < 0and EZ\”) = v i <0

Assume there are 07,65 > 0 such that

Eexp(G*Z(l)) = 1&Eexp(6;2/Y) =1
Eexp(67 Z )Z ] < o0 &E[exp(9§Z£2))Z£2)] < o0
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Large Deviations for the Stylized Example

Uy(x) = Py[W,(t) hits A OR B
~ crexp(—nb;i(1— v x)) + cxexp(—nb3(1 — v x))
= exp(—nh(x)+o(n))

as n /" oo, where

h(x) = min[f7(1 — v x), 63(1 — v) x)].
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© Example of an Isaacs Equation (Dupuis & Wang)
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let ¢ (1) = log Eexp (ATYk)
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let p (A) = log Eexp (ATYk)
o Put I (x) = max;[ATx — 9 (A)]
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let p (A) = log Eexp (ATYk)
o Put I (x) = max;[ATx — 9 (A)]
o fi(y)=exp(ATy— ¢(A)) f(y) <- Controls
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let p (A) = log Eexp (ATYk)
o Put I (x) = max;[ATx — 9 (A)]
o fi(y) =exp ()\Ty -y (/\)) f(y) <- Controls

@ HJB egn. to minimize 2nd moment...

Ch (w) = mAin E[e*ATYH’(A) Co (w+ Y/n)]
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let ¢ (1) = log Eexp (ATYk)
Put / (x) = maxy[ATx — ¢ (A)]
fr(y) =exp ()\Ty -y (/\)) f(y) <- Controls

HJB eqn. to minimize 2nd moment...

Ch (w) = mAin E[e*ATYH’(A) Co (w+ Y/n)]

Co (w) = exp (—ng (w))

0

Blanchet (Columbia)

~
~

~
~

min log E[e~} X+¥()=nlg(w+Y /n)=g(w)])
A

A

min ml?x[—‘BT()\-i-ag (w))+9 (1) —J(B)]
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Isaacs Equation for |.S. (Dupuis - Wang)

o Let ¢ (1) = log Eexp (ATYk)
o Put I (x) = max;[ATx — 9 (A)]
fr(y) =exp ()\Ty -y (/\)) f(y) <- Controls

HJB eqn. to minimize 2nd moment...

Ch (w) = mAin E[e*ATYH’(A) Co (w+ Y/n)]

Co (w) = exp (—ng (w))

0 =~ minlog E[e*)‘TXH’()\)*n[g(w+Y/n)—g(w)]]
A

A min mgX[—ﬁT(?\ +g(w)) +¢(A) —J(B)]

Subject to g (w) =0 on AUB.
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© Isaacs Equation and Harmonic Functions
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Isaacs Equation & Harmonic Functions

@ u,(x)=1on AUB and

up (x) = Py (Taug < ) = E[u, (x+ Y1/n)]
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Isaacs Equation & Harmonic Functions

@ u,(x)=1on AUB and
up (x) = Py (Taug < 00) = E[u, (x + Y1/n)]
@ Zero-variance sampler is:

P" (Vi1 € dy| Sk = nx) = f(y)w
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler
. u
P*(Yiy1 € dy| Sk = nx) = f (y) =

e Approximate sampler u, (x) ~ exp (—nh(x))

P(Yk+1 € dy| Sk = nx)
~ f(y)exp(=nlh(x+y/n)—h(x)])
~ f(y)exp(—0h(x)-y)
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler
. u
P*(Yiy1 € dy| Sk = nx) = f (y) =

@ Approximate sampler u, (x) =~ exp (—nh (x))

P(Yk+1 € dy| Sk = nx)
~ f(y)exp(=nlh(x+y/n)—h(x)])
~ f(y)exp(—0h(x)-y)

e But

1:/ﬁ(Yk+1 €dy| Sk =nx) = ¢ (—0h(x)) =0
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Isaacs Equation & Harmonic Functions

@ Zero-variance sampler
. u
P*(Yiy1 € dy| Sk = nx) = f (y) =

@ Approximate sampler u, (x) =~ exp (—nh (x))

P(Yk+1 € dy| Sk = nx)
~ f(y)exp(=nlh(x+y/n)—h(x)])
~ f(y)exp(—0h(x)-y)

e But
1:/ﬁ(Yk+1 €dy| Sk =nx) = ¢ (—0h(x)) =0

e Equivalent to Isaacs equation with g (x) = 2h (x).
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@ Lyapunov Inequalities and Subsolutions
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The Second Moment of a State-dependent Estimator

o Consider any sampler

P (Vi1 € dy| Sk =nx) = r ' (x,x+y/n)f (y)
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The Second Moment of a State-dependent Estimator

o Consider any sampler
pQ (Y1 € dy| Sk = nx) = r1 (x,x+y/n)f(y)
o Likelihood ratio

r(W,,(O), Wn (1/”)) ...r(W,,(TAUB — 1), Wn(TAug))
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The Second Moment of a State-dependent Estimator

o Consider any sampler
P (Vi1 € dy| Sk =nx) = r ' (x,x+y/n)f (y)
@ Likelihood ratio
r(W,(0), W, (1/n)) ..t(Wy(Taus — 1), Wa(Taug))
@ Second moment of estimator
s(x) = Ex[r(x,x+Y/n)s(x+ Y /n)]

subject to s(x) =1 for x € AUB.
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The Lyapunov Inequality

B. & Glynn '07: Lyapunov inequality

v(x) > Ex[r(x,x+ Y /n)v(x+ Y /n)]

subject to v(x) > 1 for x € AUB. Then, v (x) > s (x).

e How to use the result? 1) Identify a change-of-measure, 2) use
heuristic / approx. to force v(x) & u, (x)°.
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The Lyapunov Inequalities and Subsolutions

@ Lyapunov function v (x) = exp(—ng (x)) & A = —dg (x) /2
1> E[exp(=ATY + ¢ (1)) exp(—nlg (x + Y/n) — g(x)])]

subject to g(x) < 0 for x € AUB. Then, v (x) > s(x).
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The Lyapunov Inequalities and Subsolutions

@ Lyapunov function v (x) = exp(—ng (x)) & A = —dg (x) /2
1> E[exp(=ATY + ¢ (1)) exp(—nlg (x + Y/n) — g(x)])]

subject to g(x) < 0 for x € AUB. Then, v (x) > s(x).
@ Expanding as n " oo we get

14+ 0 (1/n) > exp[2¢p(—dg (x) /2)]
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The Lyapunov Inequalities and Subsolutions

@ Lyapunov function v (x) = exp(—ng (x)) & A = —dg (x) /2
1> E[exp(=ATY + ¢ (1)) exp(—nlg (x + Y/n) — g(x)])]

subject to g(x) < 0 for x € AUB. Then, v (x) > s(x).
@ Expanding as n " oo we get

1+ 0(1/n) = exp[2¢(—0g (x) /2)]
@ Yields subsolution to the Isaacs equation (again smoothness)

P (—dg(x)/2) <0st g(x)<0,xc AUB
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© Mollification
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The Mollification

@ Back to random walk example
h(x) = min[07(1—v{ x),605(1—v) x)]
= —max[0}(v{ x —1),05(vy x —1)]

NOT smooth...
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The Mollification

@ Back to random walk example
h(x) = min[07(1—v{ x),605(1—v) x)]
= —max[0}(v{ x —1),05(vy x —1)]
NOT smooth...
o Mollification:
he (x)
— —eloglexp(8 (W x — 1) /¢) + exp(5(v] x — 1) /)]
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The Mollification

@ Back to random walk example
h(x) = min[07(1—v{ x),605(1—v) x)]
= —max[0}(v{ x —1),05(vy x —1)]

NOT smooth...
@ Mollification:

he (x)
— —cloglexp(6 (W x — 1)/€) + exp(63(v] x — 1) /¢)]

@ Implementation via mixtures:

_ x) = 0T wi (x) vl w; (x)
ohe (x) 911Wf<x)+W2€(X)+922Wf(X)+W2£(X)’
wi (x) = exp(ff(v) x—1)/e),
wi (x) = exp(63(v) x —1)/e).
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The Mollification

Theorem (Dupuis & Wang '07)

Let g, (x) = 2he,(x) and assume that ne, — oo apply corresponding
sampler. Then,

2nd Moment of Est. = exp(—2nh(x)+ o (n)).
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A Lyapunov Inequality

@ Selecte, =1/n

wi (x) = exp(nd (1 x — 1))
wr (x) = exp(nd3(v] x — 1))
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A Lyapunov Inequality

@ Selecte, =1/n

wi(x) = exp(nfi(v x —1))
wo (x) = exp(nf3(v) x —1))

o Mixture sampler from density f (y)

() wi (x) wa (x) N
f (i) T m (x) + wa (x) &P (91 " y) + wip (X)2+ wy (x) P (92 v2Ty)
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A Lyapunov Inequality

@ Selecte, =1/n

wi(x) = exp(nfi(v x —1))
wo (x) = exp(nf3(v) x —1))

o Mixture sampler from density f (y)

() wi (x) wa (x) N
f (i) T m (x) + wa (x) &P (91 " y) + wip (X)2+ wy (x) P (92 v2Ty)

@ Lyapunov function
v (x) = (w1 (x) + wp(x))? = 1
for vy x > 1 OR v/ x > 1... BOUNDARY CONDITION OK!

Blanchet (Columbia) Lyapunov inequalities and subsolutions



A Lyapunov Inequality

vix) = [w(x)+w(x))
wi (x+Y/n) = w(x) Y
wo (x+Y/n) = wy(x) Y
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A Lyapunov Inequality

°
vix) = [w(x)+w(x))
wi (x+Y/n) = w(x) Y
wo (x+Y/n) = wy(x) Y
°
£ v(x+Y/n) 1
wi(x) 05 Y wa(x) __o03v] Y
v (X) WI(X)1+W2(X)e 1V + WI(X)2+W2(X)e 2Va

£ (x)exp (07v] Y) + w2 (x) exp (05 V) )

wi (x) + wz (x)
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@ One can take € = 1/n as mollification parameter
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Moral...

@ One can take € = 1/n as mollification parameter

@ ¢ = 1/nis the optimal choice (bounded coef. of variation)

2nd Moment < (v1(0) + v2(0))? < cu, (0)?
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e A Word on Tandem Networks
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Markovian Tandem Networks

@ Consider a stable tandem network with d stations.

o B = # of bottlenecks (i.e. stations with maximum load)

Theorem (B., Glynn and Leder '09)

There is selection of mollification parameters that guarantees the
coefficient of variation of the Dupuis-Sezer-Wang '07 sampler to be

0 (n2(d—,3+1)>_

Remark: This guarantees better performance than solving the associated
linear system of equations.
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@ Conclusions
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Conclusions

@ Subsolutions can be understood from the standpoint of Lyapunov
inequalities.

@ Lyapunov inequalities help understand the nature of mollification
parameters.

@ Lyapunov inequalities guided by subsolutions can strengthen the
performance analysis.

@ Better complexity of importance sampling vs. linear system for
tandem rigorously validated.
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